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This challenge report explores limits, specifically using polar coordinates in R2. We show that mapping to polar
is not a linear map. We show that there are many ways to represent a point in polar and graph a polar equation.
Then, we transition into limits where we show how we can use polar as a tool through a specific application of the
squeeze theorem to calculate and determine if limits exist.

1 Linearity of Polar Coordinates

We will begin by showing that the map f : R2 → R2 is not linear. This map is defined by:

(r, θ) 7→ (r cos(θ), r sin(θ))

In order to determine linearity, we must look at a definition of a linear map.
Definition 1.1: A map g : V 7→ W is a linear map if and only if the following two conditions are true:

1. For arbitrary vectors u⃗, v⃗ ∈ V, g(u⃗+ v⃗) = g(u⃗) + g(v⃗)

2. For an arbitrary u⃗ ∈ V and any λ ∈ R, g(λu⃗) = λg(u⃗)

Proving that our map f does not satisfy either of these conditions every time is sufficient to prove that f is not
linear. Thus, we will look at the first condition, the additive aspect of linear maps and see how it relates to our map
f .
Suppose a⃗, b⃗ ∈ R2 such that a⃗ = ⟨ra, θa⟩ and b⃗ = ⟨rb, θb⟩

Consider:

f (⃗a+ b⃗)

= f ((ra, θa) + (rb, θb))

= f ((ra, θa) + (rb, θb))

By the component-wise definition of vector addition in R2

= ((ra + rb) cos(θa + θb), (ra + rb) sin(θa + θb))

By the definition of f

Comparing this with the value of f (⃗a) + f (⃗b) yields

= (ra cos θa, ra sin θa) + (rb cos θb, rb sin θb)

= (ra cos θa + rb cos θb, ra sin θa + rb sin θb)

Observe:

((ra + rb) cos(θa + θb), (ra + rb) sin(θa + θb)) ̸= (ra cos θa + rb cos θb, ra sin θa + rb sin θb)

With some values of a⃗, b⃗ this may hold. However, it clearly does not hold for all values. For instance, a counter
example could be:

a⃗ = ⟨1, π
3
⟩, b⃗ = ⟨5, π

4
⟩
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(
(1 + 5) cos(

π

3
+

π

4
), (1 + 5) sin(

π

3
+

π

4
)
)
̸=

(
1 cos(

π

3
) + 5 cos(

π

4
)), 1 sin(

π

3
) + 5 sin(

π

4
)
)

(−1.5529, 5.7955) ̸= (4.0355, 4.40155)

Because we are trying to disprove, we only need one counterexample. However, it is clear that most often

((ra + rb) cos(θa + θb), (ra + rb) sin(θa + θb)) ̸= (ra cos θa + rb cos θb, ra sin θa + rb sin θb)

f (⃗a+ b⃗) ̸= f (⃗a) + f (⃗b)

Thus, f is not a linear map.

2 Infinite Representations of Euclidean Coordinates as Polar Coordi-
nates

We will now look at how Euclidean coordinates can be expressed as polar coordinates. We will show how they can
be expressed in an infinite number of ways, showing there are an infinite number of pairs of (r, θ) that correspond to
a single (a, b).

Definition 2.1: The arbitrary rectangular point (x, y) corresponds to the point (r, θ) in polar form by the
following:

r =
√
x2 + y2 and tan(θ) =

y

x
if x ̸= 0

Definition 2.2: The arbitrary polar point (r, θ) corresponds to the point (x, y) in rectangular form by the
following:

x = r cos(θ) and y = r sin(θ)

The above definitions were modified from the challenge problem report definitions 1.1 and 1.2 respectively

Consider the following diagram:

a

br =
√
a2 + b2

θ

(r, θ)

Let’s use this diagram to give a visual intuition for why there exist an infinite number of polar representations of
a single rectangular point. Note how the same point can be represented by adding a factor of 2π.

a

br =
√
a2 + b2

θ + 2π

(r, θ + 2π)
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Visually, it should be clear that this process of adding a factor of 2π will alone produce an infinite number of
representations of a rectangular coordinate. Imagine the angle progressing clockwise instead. This would occur if
factors of 2π are subtracted from θ, which, again, can be done an infinite number of times.

Now, let’s consider how a negative r can be corrected of θ by π. In the following picture, suppose r is negative
and θ is a value greater than π.

a

b

θ

(r, θ)

(|r|, θ)

Point is flipped backwards through origin

Now, let’s show this algebraically:
Using definition 2.1, we see that

r =
√
a2 + b2 and tan(θ) =

b

a
if a ̸= 0

We can thus deduce that:

(r, θ) = (−r, θ − π)

Furthermore, we know by the periodic nature of a polar angle θ:

(r, θ) = (r, θ + 2πn) where n ∈ Z

The above statement produces an infinite number of potential representations of a rectangular coordinates,
showing both algebraically and geometrically how there are multiple ways to represent a singular Euclidean coordinate
in polar coordinates.

For good measure, we will consider an example. Suppose we want to convert (3, 4) into polar coordinates. We
will do the following:

r =
√

32 + 42 and tan(θ) =
4

3

We can say that:

(3, 4) −→ (5, 0.927 + 2πn) and (−5, 4.069 + 2πn)

This covers all the ways this point can be expressed.

3 Graph of a Polar Equation

We will now graph the equation θ = r2. It is worth recognizing that this graph is slightly more unique as θ is written
as a function of r. More often than not, r is the dependent variable and θ is the independent variable in polar
equations. Because of this distinction, to make the actual graph below, the code uses the function split into two
parts as a function of θ instead of one of r.

r =
√
θ and r = −

√
θ
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Note: the code to create the above graph θ = r2 was modified from the code in the challenge report itself.
Here is a table of values to consider that we could have used to begin to create our graph:

r θ
1 1
-1 1
2 4
-2 4
π π2

−π π2

From this table, it is easy to see how r will have both a positive and negative value for each value of θ

4 Limits Using Polar Coordinates

We have the following theorem. Theorem 4.1: Limits with polar coordinates (This is taken nearly directly from Theorem
2.2 of the challenge report.)

Suppose f(x, y) : R2 7→ R is a function of two variables that can be expressed in polar coordinates as
g(r, θ) := f(r cos(θ), r sin(θ)). Then,

lim
(x,y)→(0,0)

f(x, y) = L

if and only if there exists δ > 0 and a function h : R 7→ R such that both
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• If 0 < r < δ, then |g(r, θ)− L| ≤ h(r) for all θ

• limr→0 h(r) = 0

In the section, we will come up with an analog for this theorem such that we can use for limits when they approach any
(a, b) as opposed to just (0, 0).

Theorem 4.1 geometrically states that has a limit of 0 when x, y approach 0 because of the following. We know that

r =
√

x2 + y2

and thus

r2 = x2 + y2

Therefore, we can say that as lim(x,y)→(0,0), f(x, y) stays inside the following:

{(x, y)|x2 + y2 ≤ r2}
.

x

y

r
(x, y)

Now, what we want to do is shift our theorem so that we can see the behavior of a function in as inputs approach any a, b.
This would correlate to the following change:

x

y

r
(x, y)

(a, b)

Now, we will state the analogous theorem taking into account the above shift:
Theorem 4.2: Analogous theorem to Theorem 4.1

Suppose f(x, y) : R2 7→ R is a function of two variables that can be expressed in polar coordinates as
g(r, θ) := f(r cos(θ) + a, r sin(θ)) + b). Then,

lim
(x,y)→(a,b)

f(x, y) = L

if and only if there exists δ > 0 and a function h : R 7→ R such that both

• If 0 < r < δ, then |g(r, θ)− L| ≤ h(r) for all θ
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• limr→0 h(r) = 0

In order to prove Theorem 4.2, we will reduce to proving Theorem 4.1 as follows.
We will define the following:

f̃(x, y) = f(x+ a, x+ b)

and

u = x− a and v = y − b

Consider:

L = lim
(x,y)→(a,b)

f(x, y)

= lim
(x−a,y−b)→(0,0)

f(x, y)

= lim
(u,v)→(0,0)

f(x, y)

= lim
(u,v)→(0,0)

f(u+ a, v + b)

= lim
(u,v)→(0,0)

f̃(u, v)

Thus, we can clearly see that proving Theorem 4.1 means that Theorem 4.2 is also true. This follows both from the algebra
and from the geometric picture which essentially just shows a translation of the theorem, a kind of moving of the origin.

As such, we will now prove Theorem 4.1. Because this theorem is a biconditional statement, we should normally prove
the theorem in both ways. This would mean assuming that the limit of f(x, y) = L and deriving the two conditions from
that, and it would mean starting with the two conditions and getting back to that. However, for our purposes, the useful way
is to start with the conditions and show that together they imply that lim(x,y)→(0,0) f(x, y) = L. This is useful because we
generally use the conditions to determine the limit when using this theorem.

First, we must consider the very fundamental δ − ϵ definition of a limit.
Definition 4.1: δ − ϵ limit definition of a multivariable function.

A function f : Rn 7→ R has the limit L at a certain value a if for all ϵ > 0, there exists a δ > 0 such that for all x⃗ ∈ Rn,

0 < ||x⃗− a⃗|| < δ implies that |f(x⃗)− L| < ϵ

Thus, in order to prove that lim(x,y)→(0,0) f(x, y) = L, we want the above definition to be true.
Proof:
Suppose ∃h : R → R and δ > 0 that satisfies the above conditions. Consider the following. We will convert into rectangular

coordinates and show how this reduces to our definition.

if 0 < r < δ, then |g(r, θ)− L| < h(r)

↔ if 0 <
√

x2 + y2 < δ, then |f(x, y)− L| ≤ h(r)

↔ if 0 < || < x, y > || < δ, then |f(x, y)− L| ≤ h(r)

↔ if 0 < || < x, y > − < 0, 0 > || < δ, then |f(x, y)− L| ≤ h(r)

↔ if 0 < ||x⃗− 0⃗|| < δ, then |f(x, y)− L| ≤ h(r)

As limr→0 h(r) = 0, we can say that for all ϵh > 0, ∃δh > 0 such that

0 < |r − 0| < δh implies that |h(r)− 0| < ϵh

Thus, if we set ϵh = ϵ and since we have already proven the condition immediately above regarding δh, we can work with
the following

|h(r)− 0| < ϵ

|h(r)| < ϵ

Now substituting into our earlier work:

↔ if 0 < ||x⃗− 0⃗|| < δ, then |f(x, y)− L| ≤ h(r)
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↔ if 0 < ||x⃗− 0⃗|| < δ, then |f(x, y)− L| < ϵ

We have thus proven that lim(x,y)→(0,0) exists and has a value of L if limr→0 h(r) = 0 and if 0 < r < δ, then |g(r, θ)−L| ≤
h(r) for all θ. Therefore, by definition 4.1, we have proven the useful direction of Theorem 4.1, proving Theorem 4.2 in the
process.

5 Showing Limits Do Not Exist with Polar Coordinates

In this section, we will attempt to prove that the following limit does not exist.

lim
(x,y)→(0,0)

x2

x2 + y2

In order to consider limits using polar coordinates, we need to consider another theorem.
Theorem 5.1: Squeeze Theorem

Suppose f(x⃗, g(x⃗), h(x⃗) are multivariable functions from Rn 7→ R such that:

lim
x⃗→P⃗

f(x⃗) = L = lim
x⃗→P⃗

h(x⃗)

If there exists δ > 0 such that for all x⃗ ∈ Bδ(P⃗ )− {P⃗} the following is true

f(x⃗) ≤ g(x⃗) ≤ h(x⃗)

Then limx⃗→P⃗ g(x⃗) = L
In general terms, the squeeze theorem states that if a function is squeezed between two functions and both functions

approach the same value L at a certain point, the limit of the function being squeezed is also L.
Looking again at our limit:

lim
(x,y)→(0,0)

x2

x2 + y2

We will convert it into polar form using definition 2.1.

lim
r→0

r2 cos2 θ

r2 cos2 θ + r2 sin2 θ

↔ lim
r→0

r2 cos2 θ

r2

↔ lim
r→0

cos2(θ)

↔ cos2(θ)

We see that this limit now depends on θ. We have a corollary to theorem 4.2 (taken directly from the Challenge Problem
Report) which is the following
Corollary 5.1: If limr→0 g(r, θ) depends on θ, then the value of the limit will differ for different straight line paths. Thus,
lim(x,y)→(0,0) f(x, y) does not exist.

Lets discuss the above corollary. For a limit to exist, it must have a singular value. We have proven the uniqueness of
limits before. Thus, it should suffice to evaluate the value of the limit at distinct values of θ and observe how they are different
to prove the limit doesn’t exist.

Consider θ = 0 and θ = π
4
of cos2(θ):

= cos2(0) = 12 = 1 = cos2
(π
4

)
=

(√
2

2

)2

=
1

2
Because 1

2
̸= 1, we know that the limit

lim
(x,y)→(0,0)

x2

x2 + y2

does not exist.
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6 Subtleties of Limits with Polar Coordinates

The following section will attempt to prove both that the limit of the function below is 0 and that it doesn’t exist.

lim
(x,y)→(0,0)

xy2

x2 + y4

More specifically, it will prove that when f is converted into polar coordinates, limr→0 g(r, θ) = 0 while proving that f in
polar form does not have a limit. We will then relate this to Theorem 4.1.
i. Proving limr→0 g(r, θ) = 0

We need to consider the following properties of limits. These properties were taken from the lecture notes. We will employ
most of these properties in the following algebra. Suppose f, g : Rn 7→ R and the limits as both inputs approach P⃗ exist.

a. Sum Law:
lim
x⃗→P⃗

(f(x⃗) + g(x⃗)) = lim
x⃗→P⃗

f(x⃗) + lim
x⃗→P⃗

g(x⃗)

b. Scalar Multiple Law:
lim
x⃗→P⃗

λ(f(x⃗)) = λ lim
x⃗→P⃗

f(x⃗)

c. Product Law:

lim
x⃗→P⃗

(f(x⃗)g(x⃗)) =

(
lim
x⃗→P⃗

f(x⃗)

)(
lim
x⃗→P⃗

g(x⃗)

)
d. Quotient Law: If limx⃗→P⃗ g(x⃗) ̸= 0,

lim
x⃗→P⃗

f(x⃗)

g(x⃗)
=

limx⃗→P⃗ f(x⃗)

limx⃗→P⃗ g(x⃗)

Consider:

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

r→0

r cos(θ)r2 sin2(θ)

r2 cos2(θ) + r4 sin4(θ)

= lim
r→0

r cos(θ) sin2(θ)

cos2(θ) + r2 sin4(θ)

we are now taking the case where the denominator ̸= 0

=
limr→0 r cos(θ) sin

2(θ)

limr→0

(
cos2(θ) + r2 sin4(θ)

)
=

limr→0 r × limr→0 cos(θ) sin
2(θ)

limr→0 (cos2(θ)) + limr→0

(
r2 sin4(θ)

)
Because sin(θ) and cos(θ) range between 1 and -1,

the squeeze theorem can be applied.

=
0

cos2(θ)

The above will have a limit of 0 whenever cos2(θ) ̸= 0. Now, since our goal is to show that the limit is 0, we must show
that when cos2(θ) = 0, the limit is still 0. We know that cos2(θ) = 0 when θ = π

2
+ πn. Let us jump back to an earlier step:

lim
r→0

r cos(θ) sin2(θ)

cos2(θ) + r2 sin4(θ)

plugging in 0 for all values of cos(θ) produces

lim
r→0

0

r2

From single variable calculus, we know this limit is 0. Thus, we have shown based on theorem 4.1, limr→0 g(r, θ) = 0.

ii. Proving lim(x,y)→(0,0)
xy2

x2+y4 does not exist

We will first consider the following definition and theorem (both were taken from the lecture notes; def. 2.3.9 and theorem
2.3.10):
Definition 6.1: Let X ⊂ Rn. A point p⃗ ∈ Rn is a limit point of X if there is a sequence {a⃗n} contained inside X such that
{a⃗n} converges to p⃗
Theorem 6.1: Let X ⊂ Rn, f : X 7→ Rm be a function and a⃗ be a limit point of X. Then, the below two statements are equal:

1. limx⃗→a⃗ f(x) = b⃗
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2. All sequences {a⃗n} converging to a⃗ where a⃗n ̸= a⃗, the sequence {f (⃗an)} converges to b⃗

What this theorem and the definition supplementing it tell us is that for the limit to exist, it must be equivalent across
any and all approaches to said limit. Thus, if we find two distinct paths r⃗1(t) and r⃗2(t) such that they do not both produce
the same limit, then the limit does not exist.

Consider the following two approaches to lim(x,y)→(0,0)
xy2

x2+y4

r⃗1(t) = ⟨0, t⟩ and r⃗2(t) = ⟨t2, t⟩
Consider r⃗1(t):

0× t2

0 + t4
= 0

Consider r⃗2(t):

t2 × t2

t4 + t4
=

1

2

Because 1
2
̸= 1, the lim(x,y)→(0,0)

xy2

x2+y4 does not exist.
iii. Relate to Theorem 4.1

We will now attempt to reconcile our results. The root of the difference between the results comes from losses during our
simplification down from a two variable system to a one variable system where we had to fix our analysis of θ.

The issue arises with a specific element of Theorem 4.1. The conditions of Theorem 4.1 require that If 0 < r < δ, then
|g(r, θ)− L| ≤ h(r) for all θ

The key is for all θ. This means that the theorem must hold true even for when θ = f(r) (not to be confused with our
primary multivariable function f). We will now show a path such that this limit does not equal 0. Once we do that, the
seemingly contradictory results explain themselves. Our segmented analysis does not allow θ to take curved paths. While we
still cover the entire plane in our single variable case, we do not cover this θ = f(r) case.

Consider the following θ = f(r):

θ = cos−1(r)

We will again go back to the second step in section i and then substitute in this path.

lim
r→0

r cos(θ) sin2(θ)

cos2(θ) + r2 sin4(θ)

↔ lim
r→0

r cos(f(r)) sin2(f(r))

cos2(f(r)) + r2 sin4(f(r))

↔ lim
r→0

r cos(cos−1(r)) sin2(cos−1(r))

cos2(cos−1(r)) + r2 sin4(cos−1(r))

↔ lim
r→0

r2 sin2(cos−1(r))

r2 + r2 sin4(cos−1(r))

↔ lim
r→0

sin2(cos−1(r))

1 + sin4(cos−1(r))

by knowledge of single variable limits

↔ sin2(cos−1(0))

1 + sin4(cos−1(0))

↔
sin2(π

2
)

1 + sin4(π
2
)

↔ 1

1 + 1

↔ 1

2

Thus, we have found a path θ = f(r) that does not have a limit of 0. This was the primary issue. By our analysis in part
i, we made θ ∈ R, some fixed value. This was acceptable for our limit of limr→0 g(r, θ). The limit of this is definitively 0. Say
r = t and θ = f(t). We were not taking the limit as limt→0 g(t, f(t)); thus, we did not consider anything other than straight
line paths. We ignored when θ would pass through π

2
or some multiple of it. Thus, segmented analysis would very clearly

break down because it does not cover when θ is in both categories.
We can also see how h(r) and thus the squeeze theorem that theorem 4.1 is based on breaks down. |g(r, θ) − L| ≤ h(r)

should be true given the conditions. However, we see that:

9



lim
r→0

r cos(θ) sin2(θ)

cos2(θ) + r2 sin4(θ)
≤ h(r)

contradicting limr→0 h(r) = 0. This provides yet another example of the breakdown of Theorem 4.1 when θ cannot be
completely reduced out of the equation. This is the idea of our Corollary 5.1. h(r) is a collection of circular level curves that
compress into a singular point. However, this fails with our path θ = f(r) .

Summary:

In this report we proved and discussed theorems and examples involving polar coordinates and limits. We looked at nuances of
how polar coordinates can and cannot be used. I collaborated with many people on this report. I learned a lot from office hours
with both LAs and with Professor Wong. I took ideas about question four, five, and six from these office hours. Furthermore,
I collaborated somewhat with about five students in the class: Jack, Bogdan, Hero, Ishan, and Lucas. Additionally, Saf
reviewed my report and gave some feedback on question 6.
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