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This challenge report explores linear maps in R2, focusing mostly on rotational linear maps with some discussion
of reflections. The first part deals with reflections. The second introduces the matrix associated with a rotational
linear map: Rθ. Aside from a brief analysis of another linear map in R2, this rotation is what will be analyzed for
the majority of the report. Overall, the motivation is to develop a geometric understanding of linear transformations
and their matrix equivalents.

1 Linear Map Reflection

Our analysis of reflections of linear maps in R2 will be characterized by the following goal: finding a 2 × 2 matrix
R such that the associated linear map TR : R2 → R2 reflects vectors across the x-axis. The idea could easily be
translated into a reflection across the y-axis and other lines in R2.

A reflection across the x-axis would maintain the x component of a vector v⃗ ∈ R2 while reversing the sign of the
y component. As such, we want to turn a vector

v⃗ = ⟨x, y⟩ −→ ⟨x,−y⟩

Linear maps from Rn → Rn can be described in terms of matrix multiplication.

TR(v⃗) = Rv⃗

We want to find a, b, c, d ∈ R such that: [
a b
c d

] [
x
y

]
=

[
x
−y

]
Multiplying the left side out produces: [

ax+ by
cx+ dy

]
=

[
x
−y

]
We observe that ax + by = x indicating that b must be zero for this statement to be true for all y. A similar

argument may be applied to cx + dy = −y such that the statement is true for all values of c, meaning c must be
equal to 0 as well. These conclusions produce the following:[

ax
dy

]
=

[
x
−y

]
From here, ax = x produces a = 1 and dy = −y produces d = −1.
Combining the analysis for a, b, c, and d produces the following matrix that reflects vectors in R2 across the x-axis:

R =

[
1 0
0 −1

]
Therefore, TR(⟨x, y⟩) = ⟨x,−y⟩. Thus, TR is a reflection across the x-axis.
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2 Introduction to Rotational Linear Maps

We will begin our work with the following linear map. In order to work with the following matrix, fix an angle θ.
We will sketch and describe the linear map Tθ associated to the matrix

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
i. Reducing to basis vectors

In order to study the effect of a linear maps in R2, we can reduce to studying the basis vectors. In Rn, we have
the standard basis

B = {e⃗1, e⃗2, ..., e⃗n}

Definition 2.1: An ordered set of vectors B is the standard basis of V if

1. B ⊂ V

2. span(B) = V

3. B is linearly independent

As such, if vector v⃗ ∈ Rn, it can be expressed as follows: v⃗ =
n∑

i=1

vie⃗i. This follows from part three the definition

of a basis vector and the most integral to the character of the basis.
Specifically in R2, the standard basis is the following:

B = {⟨1, 0⟩, ⟨0, 1⟩}

Definition 2.2: A linear map T : V → W is defined as follows for all k ∈ N, αi

T

(
k∑
i

αixi

)
=

k∑
i

αiT (xi)

Following from the above definition of a linear map and the properties of the standard basis, we can see that the
map can solely be applied to the standard basis vectors and adjusted through linear combinations. For the remainder
of this problem and the following, we will analyze the effects of linear transforms on B = {⟨1, 0⟩, ⟨0, 1⟩}.

v⃗ = xe⃗1 + ye2

T (v⃗) = T (xe⃗1 + ye⃗2)

= xT (e⃗1) + yT (e⃗2)

The above three lines were taken from the challenge report and make use of the previous definitions
ii. Sketch of Linear Map

The following is the sketch of the result of the Rθ on the basis vectors in R2, specifically where θ = π
4 :

x

y

x

y

θ
TR
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The relevant LATEXcode to create the above graphs was taken and modified from the challenge problem report

In this example, the linear map Rθ=π
4
maintained the magnitude of the vectors while rotating it counterclockwise

exactly π
4 radians.

iii. Proof of Rotational Nature of Rθ

First, analyzing e⃗1 = ⟨1, 0⟩. Suppose the following: u⃗ = Rθ e⃗1

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1
0

]

=

[
cos(θ)
sin(θ)

]
The magnitude of u⃗ using Pythagorean Theorem is cos2 θ + sin2 θ which is equal to 1. This means that

the magnitude is preserved . Furthermore, by definition, the angle of rotation is sin−1(sin(θ)) which is simply θ.

Analyzing e⃗2 = ⟨0, 1⟩:

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
0
1

]

=

[
− sin(θ)
cos(θ)

]
By the same reasoning as e⃗1, the magnitude of e⃗2 is preserved. In order to determine the rotation of Rθ e⃗2, we

can simply check if it remains orthogonal to Rθ e⃗1. To do this, we will calculate the slope for both vectors.

m1 =
sin(θ)

cos(θ)
= tan(θ)

m2 = −cos(θ)

sin(θ)
= − cot(θ)

m1 and m2 are opposite reciprocals. By the definition of orthogonality in R2, Rθ e⃗2 remains perpendicular to
Rθ e⃗1. Thus, the linear transformation associated with Rθ is a rotation by θ counterclockwise and preserves the
magnitude of the original vector.

Theorem 2.3: The dot product between two vectors is zero when they are orthogonal to each other.
We could also make use of Theorem 2.3, taking the dot product of Rθ e⃗1 and Rθ e⃗2 to check if the two vectors are

orthogonal. This is one of the many computational uses of the dot product.

[
cos(θ) sin(θ)

] [− sin(θ)
cos(θ)

]
= − cos(θ) sin(θ) + sin(θ) cos(θ) = 0

Because the dot product of the two vectors is 0, they remain orthogonal, indicating that both were rotated by
the same θ. This idea was taken from office hours with Professor Wong.

3 Linear Map TS

Next, we will analyze the following matrix. Similar to part 2, we will sketch and describe the linear map TS associated
to the matrix.

S =

[
1 1
0 1

]
Following this description, we will find the eigenvectors of S.

i. Sketching and Describing TS

We will continue to analyze the basis vectors e⃗1, e⃗2.
Performing the multiplication results in:

Se⃗1 =

[
1 1
0 1

] [
1
0

]
=

[
1
0

]
and...
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Se⃗2 =

[
1 1
0 1

] [
0
1

]
=

[
1
1

]
This produces the following:

x

y

e⃗1

e⃗2

x

y

Se⃗1

Se⃗2

(1, 0)

(1, 1)

TS

The relevant LATEXcode to create the above graphs was taken and modified from the challenge problem report

Definition 3.1: The identity matrix is matrix associated with the linear transformation that leaves a vector
unchanged. In R2 the identity matrix is

I =

[
1 0
0 1

]
It is worth noting the similarity of S and I. It helps to understand the effect of the transform. The extra 1 in

the upper right corner of S essentially pulls e⃗2 to the right while leaving e⃗1 unchanged.
To describe the change in the magnitude of a vector and direction, we can analyze the effect on v⃗ = ⟨v1, v2, ⟩.[

1 1
0 1

] [
v1
v2

]
=

[
v1 + v2

v2

]
Thus, based on the resulting matrix, the magnitude is

√
(v1 + v2)2 + v2. The direction θ would be the sin−1(

√
(v1+v2)2+(v2)2

v2
).

ii. Finding eigenvectors of S
Definition 3.2: Suppose H is the linear map associated to a matrix D. A non-zero vector v⃗ is an eigenvector of

D and has an eigenvalue of λ if Dv⃗ = λv⃗ where λ ∈ R.
As described in the Challenge Report, solving for the roots of the characteristic polynomial p(λ) in R2 produce

eigenvalues.

M =

[
a b
c d

]
p(λ) = (a− λ)(d− λ)− bc

Plugging in the values of S into p(λ) produces the following

p(λ) = (1− λ)(1− λ)− 0

λ = 1

1 is the eigenvalue of S. Now, in order to find the eigenvectors of S, we need to solve a system using our newly
found eigenvalue. [

a b
c d

] [
x
y

]
=

[
λx
λy

]
[
1 1
0 1

] [
x
y

]
=

[
x
y

]
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1) x+ y = x

2) 0x+ y = y

The above system has infinite solutions for x while y must equal to 0. This fits with the nature of eigenvectors
as they can all be scaled. As such, the eigenvectors are:

α(⟨1, 0⟩) for all α ∈ R

In other words, the eigenvectors are all v⃗ ∈ R2 parallel to ⟨1, 0⟩

4 Real Eigenvalues of Rθ

We will return to Rθ that we analyzed in section 2. We are now focusing on finding any real eigenvalues of Rθ. More
specifically, we will find the θ when such values exist. We will show clear steps to prove our results

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
From the characteristic polynomial, we have:

p(λ) = (a− λ)(d− λ)− bc

p(λ) = (cos(θ)− λ)(cos(θ)− λ) + sin2(θ)

= cos2(θ)− 2λ cos(θ) + λ2 + sin2(θ)

= λ2 + λ(−2 cos(θ)) + 1

By the discriminant,

4 cos2(θ)− 4(1)(1) ≥ 0

cos2(θ) ≥ 1

cos(θ) ≥ 1 or cos(θ) ≤ −1

By the domain of the cosine function, cos(θ) = 1,−1. Therefore:

θ = πn for all n ∈ N

Thus, only when θ = πn are there real eigenvalues for S.

5 Eigenvectors of Rθ

The obvious next step after looking at eigenvalues is to look at the corresponding eigenvectors. Similar to question
2, we will fix an angle θ for analysis. It turns out there are only two cases to analyze, so we will literally fix θ to a
specific value and then generalize it, analyzing the one other case in the process. Again, we are looking at the linear
map Tθ : R2 → R2 associated to the matrix

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
i. Fix angle θ

Let’s start by looking at the less obvious case that satisfies θ = πn −→ θ = π. Thus

Rθ=π =

[
−1 0
0 −1

]
Using our knowledge from definition 3.2, we can find our eigenvalue, which is needed to find a potential eigenvector.
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p(λ) = 0 = (−1− λ)(−1− λ)− 0

= λ2 + 2λ+ 1

= (λ+ 1)2

Thus, λ = −1

After solving for λ, we need to solve the same system as in question 3.[
a b
c d

] [
x
y

]
=

[
λx
λy

]
Plugging in our current values produces [

−1 0
0 −1

] [
x
y

]
=

[
−x
−y

]
This leaves us with

−x = x,−y = −y

Thus, as these equations are always true, the eigenvectors of Rθ=π are all ⟨a, b⟩ where a, b ∈ R.
ii. Generalize to all θ

As proven in question 4, Rθ only has real eigenvalues at multiples of π. As such, only these values will have real
eigenvectors.

Due to the nature of the sine and cosine function, the only other potential real eigenvector would occur at θ = 0.
From part 4, we know the eigenvalue we are considering here is 1. This would produce

Rθ=0 =

[
1 0
0 1

]
Because this is the identity matrix, which by definition transforms a linear map to itself, the eigenvectors are the

same as when θ = π: all ⟨a, b⟩ where a, b ∈ R.
Note: The same analysis using the identity matrix may have been used above. Simply factoring out the -1 would

have produced the same result as in the case Rθ=π.

In conclusion, where there exist real eigenvalues, the eigenvectors are the complete vector space R2. Or more

accurately, R2\{⃗0}. We cannot include the zero vector by the definition of a eigenvector, which includes a non

zero clause. It is also easy to see some of the reasons why 0⃗ would cause a problem. It would be an eigenvector
for all linear maps and have undefined eigenvalues. Saf pointed out the need to exclude the zero vector. Imaginary
eigenvectors will be expanded upon in question 6 with a more generalized version of Rθ.

Thus, there are always eigenvectors in this analysis, but only real eigenvectors when θ is an integer multiple of π.

6 Eigenvectors of M

Now we are going to look at a more general version of our trigonometric function based linear transformation. We
will use the below matrix M . Let a, b ∈ R such that a and b are not both zero.

M =

[
a −b
b a

]
We will now sketch and describe the linear map TM associated to the matrix. Then, we will determine the

eigenvectors of M .
i. Sketch and Describe TM

To map TM , we must multiply M by the basis vectors in R2.

Me⃗1 =

[
a −b
b a

] [
1
0

]
=

[
a
b

]
and...
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Me⃗2 =

[
a −b
b a

] [
0
1

]
=

[
−b
a

]
This produces the following:

x

y

e⃗1

e⃗2

x

y

Me⃗1

Me⃗2
(a, b)

(−b, a)

TS

The relevant LATEXcode to create the above graphs was taken and modified from the challenge problem report

Specifically, the above sketch uses a = 2 and b = 0.5. Observe how, while the magnitude is not preserved, both
basis vectors are rotated from their starting points. The magnitude of a vector p⃗ after TM is applied to it is the
following [

a −b
b a

] [
p1
p2

]
=

[
ap1 − bp2
bp1 + ap2

]
∥TM (p⃗)∥=

√
(ap1 − bp2)2 + (bp1 + ap2)2

For e⃗1, it is clear that Me⃗1 is a counterclockwise rotation of e⃗1 by sin−1
(√

a2+b2

b

)
from the values in the

multiplication above. Using the slope analysis as in part 2–given the value of the dot product of the two is 0–it is
clear that e⃗1 remains orthogonal to e⃗2, and thus is rotated by the same amount.
ii. Find eigenvalues of M

Using the characteristic polynomial produces

p(λ) = 0 = (a− λ)(a− λ) + b2

= a2 − 2aλ+ λ2 + b2

= λ2 − λ(2a) + (a2 + b2)

By the Quadratic Formula

λ =
2a±

√
4a2 − 4(1)(a2 + b2)

2

=
2a±

√
−4b2

2

=
2a± 2ib

2
= a± bi

From above, it is clear that our eigenvalues–and therefore our eigenvectors as well–will be imaginary unless b = 0.
iii. Find real eigenvectors of M

When an eigenvalue is imaginary, the eigenvector must also be imaginary. Thus, when looking for real eigenvectors,
we must consider only real eigenvalues. Thus,

b = 0

This leaves a as our eigenvalue. Then, we will the equation below
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[
a 0
0 a

] [
x
y

]
=

[
ax
ay

]

a

[
1 0
0 1

] [
x
y

]
= a

[
x
y

]
By definition, this equation is always true. As shown, a can be divided out and this reduces to definition 3.1, the

definition of the identity matrix.

Thus, when b = 0, the eigenvectors are–same as part 5–the complete vector space R2 excluding 0⃗

iv. Find all eigenvector of M
Most of our work has been of vectors in R2. While imaginary eigenvectors are inherently not in R2, the math

works our nicely and gives the same eigenvectors for all a, b not in our above special case, where a ̸= b and b = 0.
In the following analysis, we will look at the other cases, when b ̸= 0

To determine the imaginary eigenvectors, we will continue by solving our equation the same system as in previous
questions, starting with λ = a+ bi. [

a −b
b a

] [
x
y

]
=

[
x(a+ bi)
y(a+ bi)

]
[
ax− by
bx+ ay

]
=

[
x(a+ bi)
y(a+ bi)

]
This produces two separate equations

ax− by = ax+ xbi

−by = xbi

y = −xi

bx+ ay = ay + ybi

bx = ybi

x = yi

Note how the division by b is only possible because b is nonzero. Now, substituting

y = −(yi)i

y = y

y = 1

x = 1(i)

x = i

⟨x, y⟩ = ⟨i, 1⟩

Observe, how like our other systems of equations in previous sections, this equation has infinite solutions given
the nature of eigenvectors. This is why when we found the result y = y, we set y to 1 and continued.

Now, we must do the same analysis with λ = a− bi[
a −b
b a

] [
x
y

]
=

[
x(a− bi)
y(a− bi)

]
[
ax− by
bx+ ay

]
=

[
x(a− bi)
y(a− bi)

]
Again, this produces two separate equations
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ax− by = ax− xbi

−by = −xbi

y = xi

bx+ ay = ay − ybi

bx = −ybi

x = −yi

Substituting

x = −(xi)i

x = 1

y = 1(i)

y = i

⟨x, y⟩ = ⟨1, i⟩

Thus, eigenvectors are parallel to either ⟨i, 1⟩ or ⟨1, i⟩ for any a, b ∈ R. Not only are they parallel by factor of a
real λ, but they may also be scaled by a complex λ.

Summary

This report mostly analyzed how linear maps cause rotations in R2. We proved that Rθ led to a counterclockwise
rotation while maintaining the magnitude of the original vector. We generalized that a linear map with matrix M
that caused a similar rotation but did not maintain the magnitude of the original vector. We sketched and described
these rotations and found both eigenvalues and eigenvectors when possible. In this report, I did the math myself
with help from office hours. I did a peer review with Jack Hambidge and Lucas Schardt. Furthermore, I used the
LATEXcode from the challenge report to make the three sketches with some modifications. I received some minor
feedback from Saf, mostly around the nuances of the complex eigenvectors in question 6.
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