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1 Dual Basis

For each of the following vector spaces V and each (ordered) basis B, find an explicit formula for

each vector in the dual basis B*.

1\ /1\ /o0
@ Vv=krB={|0].|2], (0
1/ \1) \u

a

We will find all three dual bases vectors at once. Consider how v} acts on the vector | b | € k*. By the

definition of a basis, we have that

a 1 1 0
bl =a1|0)+a2 2| +a3|0
c 1 1 1
Thus, we have that
a 1 10 i
bl=(0 2 0 Qs
c 1 1 1 ag

Taking the inverse, we have that

aq 1 —% 0 a
(65) = 0 % 0 b
Qs -1 0 1 c

Expanding, we thus have that the dual basis vectors B* = {v}, v}, v}} are as follows

(b) V= k[x]ﬁ%B = {anxg}'

We will find all three dual bases vectors at once. This example is more straightforward. Consider how
v} acts on the a + bx + cx? € k[z]<s. By the definition of a basis, we have that



a+ bz + cx? = aq + asx + azz?

We obviously then have that oy = a,a2 = b, a3 = c.
Thus have that the dual basis vectors B* = {v}, v, vi} are as follows

vi(a+br+cx?)=a;=a, vi(a+br+cr’)=ay=>b, vi(a+br+cx’)=az=c

2 Adjoint of a Transformation

~

Define some f € (R?)* by f (Z) = 2z +y and a function T': R? — R? via the formula

(G =)

(a) Compute T*(f).

By definition, we have that T*(f) = foT for any f € (R?)*. Thus, consider

T (f) (f;) —forT (“";)

:fo<3x12y)

=6z +4y+=x
=Tr+4y

(b) Compute [T*] g+, where E is the standard ordered basis for R? and E* = {&%}, ¢4} is the dual
basis, explicitly by finding scalars a, b, ¢, d such that T* (%) = aé + ce5 and T*(€3%) = be; + deés.

Because F is the standard basis, the calculation of the dual basis is essentially trivial as in 1b and thus

=i (7)== (5) =w

If we then consider



And similarly,

(c) Compute [T]g and ([T]g)" and compare your result with your answer to the last question (you
don’t need to write anything about this comparison).

From the definition, since E is the standard basis, we can read off that

T]s = (i’ 3)
= (3 )

We can see that [T*] g~ = [T]%;, verifying a case of theorem 2.25 from class.

and easily calculate that

Annihilators and Subspaces

Let V denote a finite-dimensional k-vector space. For any subset S C V, define the annihilator S° of
S as
SO:={feV*: f(x) =0forall z € S}.

(a) Prove that S° is a subspace of V*.

We can easily check that SV contains the zero map as f(z) = 0 trivially satisfies the annihilation condition.

Now to confirm that S° is closed under scalar multiplication and vector addition, suppose that f, g € S° and
A € k. Then, consider the following for all z € S

(f +2g9)(z) = f(z) + Ag(z)
=0+ A0
=0



Thus, f + Ag € S, and it is thus a subspace. 0

1s a subspace o and x , prove that there exists some f € such that f(x .
b) If W i b fV and w hat th i wo h th 0

We can construct an f that has this property. We can leverage the finite dimensionality of V. By
consequences of the Replacement Theorem, we can pick a basis 8 for W and note that 8 U {z} must be
linearly independent since x ¢ span(/3). Thus, 5 U {x} must be a basis for some subspace that contains W
in V. We can continue to add vectors {v1,...v,} to 8 U {z} until we have a basis for all of V-again by the
Replacement Theorem. Let’s call the basis v = S U {z} U{v1,...v,}. We can define f € V* based on how
it acts on each element of f—and by definition it will automatically be linear.

0 ifvep
floy=<1 ifv==x
0 ifvedv,...v}
Clearly, f is in W? since f(v) = 0 for all v € W. However, f maps x to 1 which does not equal to zero

in any field. 0

c) In class, we constructed an isomorphism : — . Prove that = span , where
In cl d i hi PV V. P h S0)0 (S h

P(S) = {yY(s) : s € S}.

First note that

(S) = {(s) 5 € S} = {9(s) : s € S}

Let’s first show that span(y(S)) C (59)°. Assume h € span((S)). We know that
SO :={feV*: f(x)=0forall z € S}.

And clearly, we have that

(8% :={ge V**:g(f) =0forall fe S°}.
By the definition of span, we have that

h= Z ap(s;)
i—1

for s; € S. Then, if we consider h acting on some function f € V*,

h(f) = Zaiw(si)(f) = Zaif(si)

which we get by the definition of ¢ from class. Then, h(f) = 0 whenever f(s;) =0 for all s € S. Thus,
h € (S°)Y and therefore, span((S)) C (S9)°.

As for showing (S°)° C span(¢(S)), we can simply reverse the logic. Suppose h € (S°)°. Then,
h(f) = 0 Vf € S° by definition. Because we know there is natural isomorphism 1), there exists a unique
vector v € V such that (v)(f) = h(f). Then, we have that f(v) = 0Vf € S°. We need to then show that v
is in the span of S. However, this is immediate from part (b). We know that by the definition of S°, f must
vanish on all of the vectors of S. Furthermore, it must vanish on all the vectors in the span S. By (b), we



know that it is impossible for v to vanish and not be in the span. Thus, v € span(S). Lastly, by linearity,
since h = 9(v), we have that

(d) For subspaces Wy and Wy of V, prove that Wi = Wy if and only if WP = WJ9.

( = ) Assume that Wy = W5, This directly is trivially true. We have that

WY ={feV*:f(x)=0forallz e Wy}  WJ:={feV*: f(x)=0forall x € Wy}

Again, trivially, this is true by simply relabeling.
( — ) Assume that W = WY. Then, we can take the annihilator of both sides, producing

(W)? = (W3)°
By (c), this is equivalent to

span(¢(Wy)) = span(y(W1))

But, we can remove the 1 by linearity—pulling it outside the span—and then ignore it by injectivity. Then,
we just have that

span(Wp) = span(Ws)

However, a subspace is invariant under span. Thus,

Therefore, Wi = Wy if and only if W = WJ. m

(e) For subspaces Wy and Wy, prove that (W; + W) = WP n Wy,

Let’s first show that (W7 + W)Y ¢ WP N W2Y. Suppose that f € (W + Ws)?. Then, for v € Wy + W,
we have that f(v) = 0. Suppose that v; € W7 and that vy € Ws. Note, v1,ve € W7 + W3 since we can just
tack the zero vector from the other subspace. Thus, f also vanishes on any element of W; and W5. Hence,
f € Wi and f € Ws. Thus, (Wl + WQ)O C Wlo N W20

Now, let’s show that WP N W2 C (W; + W5)Y. Suppose that f(vy) = 0 for all v; € Wy, and similarly,
f(va) =0 for all vo € Wy, Suppose that v € Wi + Wa. By the definition of Wi + Ws, we know v = v} + v}
for vj € Wy and vy € Wa. Then, we know that f(v) = f(v}) + f(v4) =0+ 0= 0. Thus, f € (W + W2)°.
Hence, WY NW23 C (W +W>)?. Since we have shown both inclusions, we have that (W; +W3)? = WP N Wy.




4 Dimension of Annihilator

Prove that if W is a subspace of V, then
dim(W) + dim(W?°) = dim(V).

(For one point less: you may assume that dim(V') < o0.)

I will attempt to prove this in the general case-including infinite dimensions—which relies on the idea that
every infinite dimensional vector space has a basis. Suppose that {v, | a € A} for an index set A—where A is
not necessarily countable—is a basis for W. We can further extend this to a basis {v, | a € A} U{wy | b € B}.
Then, we can construct a basis {v} | a € A}U{w; | b € B} where we still map v}(v,) = 1 and zero otherwise.
However, this may be a problem in the infinite case, as this is not necessarily the full basis of V*. Either
way, we can still claim that {w; | b € B} set up as as described is a basis for W°.

Now consider {w; | b € B}. I claim this is a basis for W as we will show. By definition, these vectors
are linearly independent as they are a subset of a linearly independent set (i.e., our constructed basis). (This
logic still holds in the infinite case when we do not have a basis for V*of the same cardinality as V' as what
we have above for a basis of V* would just be a subset of the actual bases.) Then, we just need to show every
element in W9 is in the span of these vectors. Suppose f € W°. Then, we know we can write f generally as
an element in V*. Thus, we have that

F=Y" Fwa)vi+ Y flwp)vg

a€A beB

However, we have that f(v,) = 0Va € A. Thus,

f= Z f(vo)vy

beB

Hence, f € span ({wy, | b € B}). Therefore, we have that |[W°| + |W| = |V|. Thus, we have shown for any
case,

dim(W) + dim(W?°) = dim(V).

However, another issue potentially arises with this writing of f =, f(va)v) + > cp f(vp)vy in the
infinite case because not any f can necessarily be written this way. Yet, any f that can potentially be in
WY would be in this form.

O

5 Kernel and Range Annihilator

Suppose that W is a finite-dimensional vector space and T': V' — W is a linear transformation. Prove
that ker(7*) = im(T)°.

Let’s first show that ker(T*) C im(T)°. Suppose f € ker(T*). This means that f € W* and T*(f) =
foT = Omap. This means that f(z) = 0 where 2 € Im(7T). Thus, f € Im(T)° as it annihilates everything in
the image. Thus, ker(T*) C im(T)°.

Now suppose that Im(7)°? C ker(7*). Suppose that f € Im(7)°. Then, by definition, f(z) = 0 Vz €
Im(T'). Written another way, f o T'(x) = 0 for all # € V. This is by definition saying, T*(f) = Omap. Hence,
f € ker(T™).

We thus have both inclusions and therefore ker(7*) = im(T)°. 0



6 Eigenvalues and Eigenspaces

Let R denote the 3 x 3 real matrix

-3 -3 —4
R=|2 2 14
0 0 -1

Find all eigenvalues of R. For each eigenvalue, compute the corresponding eigenspace.

We need to find the determinant of R — \I:
det(R—\I) = 2 2—A 4

Expanding along the bottom row, we have
det(R—/\I)z(—l—)\)-‘ 9 9_ \

This gives

det(R—AI) = (=1 - XA\ +)) =0.
Solving for A:
ANA+1)?=0 = A=-1, A=0.

A = —1 has multiplicity 2.
Let’s now find the eigenvalues.
Consider the A = 0 eigenvalue Solving the equation RZ = 0, we can row reduce

-3 =3 —4]0 11 % 0
2 2 4 10 =100 3510
0 0 -—-1|0 0 0 110
Thus, we have that one eigenvector is
-1
1
0
Thus, the eigenspace for A = 0 is:
-1
FEy = span 1
0

Consider the A = 0 eigenvalue Solving the equation (R + I)Z = 0, we can row reduce

-2 -3 —4]0 12 20
2 3 4]0|=]00 0]0
0 0 010 00 0[]0



From this, there are two L.I. eigenvectors

-3 -2
2 and 0
0 1
Hence, the eigenspace for A = —1 is:
-3 -2
E_; =span 21,10
0 1

All together,

— The eigenvalues of R are:
A=0, A=-1 (with multiplicity 2).

— The corresponding eigenspaces are:

-1
FEy = span 1 ,
0
and
-3 -2
E_1 =span 21,10
0 1

7 Diagonalizable Transformation

For the linear transformation T: R? — R2, defined by the formula

r(7)=(3).

find a basis B of R? such that [T]p is diagonal (and prove your answer is correct).

4 -1

We can write this in matrix form, T (Z) = (2 1

) (Z) The eigenvectors of this matrix and its

corresponding eigenvalues are \; = 2 corresponding to vy = 1) and A\ = 3 corresponding to vy = (}) I

2

1))

B
. 1 2 1 3
makes [T]p diagonal. Then, to check, T (2> = (4> and T( ) = <3> Clearly, we then have that

1
= (5 9)

which verifies that [T is a diagonal matrix of eigenvalues. 0

claim that a basis




8 Invariant Subspaces

Given some vector space V and a linear endomorphism 7': V' — V (i.e., a linear transformation with
the same domain and codomain, often also called a linear operator), we define a T-invariant subspace
of V to be a subspace W C V such that T(W) C W. For each of the following linear endomorphisms,
determine whether the given subspace is T-invariant subspace of V.

(a) V=R[z],T(f(z)) = f'(z), W = Rlz]<a.

This is indeed a T invariant subspace as the derivative of az?+br+c € R[z]<z is T(az?®+bx+c) = 2ax+b.
This remains in R[z]<a. 0

This is not a T invariant subspace. We can consider a counterexample. Take f(z) = 2% € Rlz]<a.

Clearly, z3 € R[x]SQ. 0
€1 1+ To + I3 €1
@QOV=KT|x|=z1+z+z3|, W= To | i1 =20 = 23
T3 T1 + X2 + X3 T3
T
For any | zo | € k3, let y = 1 + x2 + 23
3
T T1+ T2+ 3 Y
Tlxz| =[x +a2+a3] =Yy
T3 1+ X2+ 23 Y
Clearly this satisfies being in W. 0O

(d) V is the set of all continuous functions [0,1] — R, T(f(¢)) = (fol f(x)da:) t,W={feV:f@i=
at + b for some a,b € R}.

This is indeed a T-invariant subspace. Consider fol at + bdt. This produces 5 +b. Multiplying by ¢ gives
something of the form a't + " where o’ = § 4+ b and b’ = 0. Thus, this is invariant.



(e) V = k%2 T(A) = (1) (1)> A, W is the subspace of symmetric 2 x 2 matrices, i.e., those 2 x 2

matrices satisfying A = A.

.. . . . 1 2 0 1 1 2 2 3
This is not invariant. Consider T' (2 3> = (1 0) (2 3) = (1 2)

This matrix is clearly not symmetric. Thus, it is not invariant.
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