
Math 115AH Homework 7

Brendan Connelly

Tuesday, May 28, 2024

1 Reflection Transformation

Consider the linear transformation T : R3 → R3 given by reflection across the line

L = {(x, y, z) ∈ R3 | x = y, z = 0}.

Concretely, this equation is given as follows: for any vector v ∈ R3, there exist unique vectors
x ∈ L and y perpendicular to L such that v = x + y. Then T (v) = x − y. In words, T does not
change the component of x parallel to L, and negates the component of v orthogonal to L. Let
β = {(1, 1, 0), (1,−1, 0), (0, 0, 1)}.
a. Check that (1, 1, 0) spans L and that (1,−1, 0) and (0, 0, 1) are orthogonal to (1, 1, 0) (and
therefore are orthogonal to the entire line L).

First, let’s check that (1, 1, 0) spans L. We have that

span{(1, 1, 0)} ⇔ {(a, a, 0) | a ∈ R} ⇔ {(x, y, z)|x = y, z = 0} ⇔ L

Using the geometrically defined dot product, we can check that (1,−1, 0) and (0, 0, 1) are orthogonal to
(1, 1, 0). We see

(1,−1, 0) · (1, 1, 0) = 1− 1 = 0 and (0, 0, 1) · (1, 1, 0) = 0

Thus, we have shown that (1, 1, 0) spans L and that (1,−1, 0) and (0, 0, 1) are orthogonal to (1, 1, 0).

b. Compute [T ]β .

We can see that by definition, T (v) = x− y where x is the component parallel to L and y the component
orthogonal. Thus, because (1, 1, 0) is on the line entirely, T (1, 1, 0) = (1, 1, 0). And because the other
two vectors are not, they wil take the role of y in our definition and thus, T (1,−1, 0) = −(1,−1, 0) and
T (0, 0, 1) = −(0, 0, 1). Thus, we can represent this transformation of the basis vectors in β coordinates as
keeping the first one and negating the second two. This produces

[T ]β =

1 0 0
0 −1 0
0 0 −1


c. Let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the standard basis for R3. Compute Q−1 = [IR3 ]Sβ .

This one follows obviously from the coordinates of β itself. We can just stack β’s vectors as columns and
then converting them to standard coordinates leaves them untouched.
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Q−1 =

1 1 0
1 −1 0
0 0 1


d. Compute Q = ([IR3 ]βS .

We can do row operations to find the inverse reasonably easily. 1 1 0 1 0 0
1 −1 0 0 1 0
0 0 1 0 0 1


⇔

 1 1 0 1 0 0
0 −2 0 −1 1 0
0 0 1 0 0 1


⇔

 1 1 0 1 0 0
0 1 0 1

2 − 1
2 0

0 0 1 0 0 1


⇔

 1 0 0 1
2

1
2 0

0 1 0 1
2 − 1

2 0
0 0 1 0 0 1


Q =

 1
2

1
2 0

1
2 − 1

2 0
0 0 1


e. Recall that the change of basis formula states that [T ]S = Q−1[T ]βQ. Use the change of basis
formula and the previous items to compute [T ]S .

We therefore want to do the following, plugging in the matrices we found in the previous sections.

[T ]S =

1 1 0
1 −1 0
0 0 1

1 0 0
0 −1 0
0 0 −1

 1
2

1
2 0

1
2 − 1

2 0
0 0 1


=

1 −1 0
1 1 0
0 0 −1

 1
2

1
2 0

1
2 − 1

2 0
0 0 1


=

0 1 0
1 0 0
0 0 −1


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2 Determinants of triangular matrices

Recall that a n × n matrix A with entires in F is upper-triangular if Aij = 0 whenever i > j. A is
lower triangular if Aij = 0 whenever j > i.
a. Using induction, prove a general formula for the characteristic polynomial of an upper-triangular
matrix.

I claim that for an upper triangular matrix, fA(t) =
∏n

i=1(t−Aii).
Base Case: (n = 1)
Let’s check the base case. This would just be a single entry matrix which by definition has a determinant

of itself.

det([t−A11]) = t−A11 =

1∏
i=1

(t−Aii)

We can also check the n = 2 base case. This by definition is

det

(
t−A11 A12

0 t−A22

)
This, we can see, has f2(t) =

∏2
i=1(t−Aii)

We have thus shown our base case.
Inductive Step: Assume fn−1(t) =

∏n−1
i=1 (t−Aii).

Now, let’s consider fn(t) = det(tIn − A) = det

(
D B
0 C

)
where D is some n − 1 × n − 1 square upper-

triangular matrix and C is 1 × 1 square matrix equal to the Ann entry of (tIn − A). B is the rightmost
column and 0 represents the row of n− 1 zeros from being upper triangular. By the the stated property in
discussion, we have

fn(t) = det(tIn −A)

= det

(
D B
0 C

)
= det(D) det(C) from discussion

=

(
n−1∏
i=1

(t−Aii)

)
det(t−Ann) inductive step

=

n∏
i=1

(t−Aii) properties of products

We have thus shown our inductive and base case. Therefore, we have proven our argument.

b. Using properties of matrices given in class, give a formula for the characteristic polynomial of a
lower-triangular matrix.

Recall that a n× n matrix A with entires in F is upper-triangular if Aij = 0 whenever i > j. A is lower
triangular if Aij = 0 whenever j > i. Taking the transpose would send an uppper-triangular matrix A to
one where Aji = 0 whenever i > j. This is the exact definition of a lower triangular matrix. We have proven
the determinant in closed under transposition, i.e. A = At for arbitrary square matrix A. Thus, we have
the same formula.

fA(t) =

n∏
i=1

(t−Aii)
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c. Textbook 5.2 #9.

We want to prove that the characteristic polynomial for some linear operator T with some basis β splits
if [T ]β is upper-triangular. Our formula for the characteristic polynomial involves [T ]β . If we just suppose
A = [T ]β where A is the matrix we worked with in our previous problem, we have that [T ]β =

∏n
i=1(t−Aii).

This directly implies that the characteristic polynomial of T is the product of linear terms and thus splits.
Part B of this textbook question has been trivially proven by the previous parts of this question; the
characteristic polynomial would by the formula be the product of linear terms and thus split.

3 Similarity and Determinants

Suppose that A and B are both square matrices with entries in a field F .
a. Prove that if A is similar to B, then detA = detB. (Hint: use the definition of similarity and
basic facts about determinants stated in class/ in section 4.4 of the textbook.)

We have that for some Q ∈ Mn×n(F ) invertible, A = Q−1BQ. We know then that

det(A) = det(Q−1BQ) def. of similarity

= det(Q−1) det(B) det(Q) prop. of determinants

=
1

det(Q)
det(B) det(Q) determinant of inverse

= det(B) field axioms

b. Are the following two matrices A and B with entries in R similar?

A =

0 0 1
0 1 1
0 1 0

 , B =

2 0 0
0 4 0
0 0 1


Using the fact that we will prove in the next subpart–that similar matrices have the same characteristic

polynomial and thus same eigenvalues–we will calculate the eigenvalues of A. We can compare these values
with the eigenvalues we can read off of the diagonal matrix B, those being, 2, 4, 1. Consider

fA(t) = det

t 0 −1
0 t− 1 −1
0 −1 t


= tdet

(
t− 1 −1
−1 t

)
= t(t2 − t− 1)

We can see that t = 2, 4, 1 are not roots to t(t2 − t − 1) and thus, the two matrices are not similar .
Additionally, not the row of zeros in A. This means that det(A) = 0 while from the product of the entries
det(B) = 8 =⇒ A ̸∼ B
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c. Prove that if A is similar to B, then det(tIn −A) = det(tIn −B).

Let’s again start with A = Q−1BQ for some Q ∈ Mn×n(F ) invertible by the definition of similarity. Now
consider

det(tIn −A) = det(tIn −Q−1BQ) substitution

= det(tQ−1InQ−Q−1BQ) def. and prop. of identity and inverse matrix

= det(Q−1(Int−B)Q) distributivity

= det(Q−1) det(Int−B) det(Q) prop. of determinatnts

= det(Int−B) determinants of inverses

Thus, we have shown that if A is similar to B, then det(tIn −A) = det(tIn −B).

d. Let V be an n-dimensional vector space and let T : V → V be a linear transformation. Prove that
the characteristic polynomial of T does not depend on the choice of matrix representation: if β and
γ are two bases for V , then f[T ]β (t) = f[T ]γ (t).

We essentially have already proven the foundation for this statement. f[T ]β (t) = f[T ]γ (t) is equivalent
to stating that the the matrices [T ]β and [T ]γ are similar by the previous part of the this question. We by
definition have that they are similar as there exists a Q = [1Fn ]βγ and a Q−1 = [1Fn ]γβ . This comes from
the definition of a basis and coordinate representations–that the identity matrix is invertible. Thus, because
[T ]β and [T ]γ are similar, the characteristic polynomial is preserved by part c. Thus, f[T ]β (t) = f[T ]γ (t).

4 Textbook 5.1 Question 2(a),(c): Characteristic Polynomial Com-
putation

a. Let’s plug in our standard basis vectors to compute [T ]S . We see that by definition, T (1, 0) = (2, 5) and
that T (0, 1) = (−1, 3). Thus,

[T ]S =

(
2 −1
5 3

)
Then,

fT (t) = det

(
t− 2 1
−5 t− 3

)
This produces

fT (t) = (t− 2)(t− 3) + 5 = t2 − 5t+ 11

C. Let’s again plug in our standard basis vectors to compute [T ]S . To take a little less time and space
to write up, we will then immediately put the results in the columns of said matrix. This gives us

[T ]S =


1 0 −1 0
−1 1 0 1
1 1 0 −1
0 0 −1 0


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Then, let’s calculate

det(tIn − [T ]S) = det


t− 1 0 1 0
1 t− 1 0 −1
−1 −1 t 1
0 0 1 t


= t · det

t− 1 0 1
1 t− 1 0
−1 −1 t

− det

t− 1 0 0
1 t− 1 −1
−1 −1 1


= t ·

(
(t− 1)(t2 − t)− 1 + t− 1

)
− (t− 1)(t− 2)

= t(t3 − 2t2 + 2t− 2)− (t2 − 3t+ 2)

= t4 − 2t3 + t2 + t− 2

5 Textbook 5.1 Question 3(a),(f): Coordinate Representation and
Eigenbasis Calculation

a. Let’s check the first vector in the formula T (a, b) = (10a− 6b, 17a− 10b). Plugging in

T

(
1
2

)
=

(
−2
−3

)
We see that this does not equal some λ ∈ F scaling ⟨1, 2⟩ and thus it is not an eigenvector.

[T ]β

is not a basis of eigenvectors, something we found before even finding the matrix itself.
Plugging in our second vector, T (2, 3) = (2, 4). We can see that each vector results in a scaled version of

the opposite basis vector. This means that
[T ]β

will be an anti-diagonal matrix with the scaling of the opposite vector in each component. This produces

[T ]β =

(
0 2
−1 0

)
f. Let’s evaluate each vector in β from our formula

T

(
a b
c d

)
=

(
−7a− 4b+ 4c− 4d b
−8a− 4b+ 5c− 4d d

)
So we have

T

(
1 0
1 0

)
=

(
−3 0
−3 0

)
= -3 ·

(
1 0
1 0

)

T

(
−1 2
0 0

)
=

(
−1 2
0 0

)
= 1 ·

(
−1 2
0 0

)

T

(
1 0
2 0

)
=

(
1 0
2 0

)
= 1 ·

(
1 0
2 0

)
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T

(
−1 0
0 2

)
=

(
−1 0
0 2

)
= 1 ·

(
−1 0
0 2

)
We can see that every basis vector is mapped to some scaled version of itself, by a factor that is boxed

above. This means that [T ]β will be an eigenbasis and will be easy to create simply by tacking the eigenvalues
on the diagonal–something that we have shown in class. Thus, we have,

[T ]β =


−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



6 Textbook 5.2 Question 3(a), (b), (f)

Let’s consider T : P3(R) → P3(R) defined by T (f(x)) = f ′(x) + f ′′(x). Let’s plug in our favorite basis
vectors for a polynomial to calculate [T ]S where our basis for P3(R) will as usual be S = {1, x, x2, x3}.

T (1) = 0 =⇒ [T (1)]S = 0⃗

T (x) = 1 =⇒ [T (x)]S =


1
0
0
0



T (x2) = 2x+ 2 =⇒ [T (x2)]S =


2
2
0
0



T (x3) = 3x2 + 6x =⇒ [T (x3)]S =


0
6
3
0


Thus, we have that

[T ]S =


0 1 2 0
0 0 2 6
0 0 0 3
0 0 0 0


This, because it is upper triangular and has no elements on the diagonal, by our formula from earlier,

fT (t) = t4. This means that the only eigenvalue is 0 and has an associated algebraic multiplicity of 4. The
only way [T ]S would have a geometric multiplicity of four would be if it had a four dimensional kernel.
But, that would mean that every vector is in the kernel which only happens with the zero matrix. [T ]S is
obviously not the matrix of all zeros and is thus not diagonalizable.

b. Let’s use S = {1, x, x2} and calculate the transformation on the basis vectors. We have

T (1) = x2 T (x) = x T (x2) = 1

We can again transform this into the standard coordinate representation in R3 in the obvious way. And
plugging in, we see that we have
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[T ]S =

0 0 1
0 1 0
1 0 0


Calculating fT (t) with our standard formula, expanding on the top row produces

fT (t) = t2(t− 1)− 1(t− 1) = (t2 − 1)(t− 1) = (t− 1)2(t+ 1) =⇒ t = −1, 1

Let’s consider t = 1. It has an algebraic multiplicity of two and thus should have a geometric multiplicity
of two to match if it is to be diagonalizable. Consider

ker

 1 0 −1
0 0 0
−1 0 1


We can add the first and third row, cancelling one, giving us a rank of one, meaning a two dimensional

kernel. It can spanned by the vectors {(1, 0, 1), (0, 1, 0)} which should be obvious from the matrix reduction
described. This means we are good for t = 1, the algebraic multiplicity and geometric multiplicity match.

For t = −1, we have

ker

−1 0 −1
0 −2 0
−1 0 −1


Cancelling out one of the first and third row, we are left with a matrix with rank two, meaning a

one-dimensional kernel. This matches the geometric multiplicity and can thus be spanned by {(1, 0,−1)}.
Therefore, we can have a basis γ = {1 + x2, x, 1− x2}. Therefore,

[T ]γ =

1 0 0
0 1 0
0 0 −1


f. In this subpart, we will work with the transpose transformation from M2×2(R) → M2×2(R). We

have come up with a [T ]S in a previous homework–where S = {E11, E12, E21, E22}–and found this to be

[T ]S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


This will have a characteristic polynomial equal to (t + 1)(t − 1)3 by simple inspection. This produces

λ1, λ2 = −1, 1, with algebraic multiplies of one and three respectively. By definition, the geometric multi-
plicity will match for λ1. Plugging in λ2 we have

ker


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


Cancelling out one of the middle rows, this does indeed have a rank of one, so geometric multiplicity of

three. We can take the vectors that span this–being Eλ2
–combined with those that span the Eλ1

eigenspace
to form a basis. We can quickly find that one vector by considering

ker


2 0 0 0
0 −1 −1 0
0 −1 −1 0
0 0 0 2


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Now, γ = {E11, E12 + E21, E22, E12 − E21}, where that final vector corresponds to Eλ1 . This produces.

[T ]γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



7 Textbook 5.2 Question 8: Proof on Diagonalizability Conditions

Suppose that A ∈ Mn×n(F ) has distinct eigenvalues λ1, λ2 and that dim(Eλ1) = n − 1. Prove that
A is diagonalizable.

From what we proved in discussion, dim(Eλ2
) ≥ 1 and dim(Eλ2

) ≤ n2 = 1. This implies that dim(Eλ2
) =

1. Since the sum of the geometric multiplicities is thus n− 1+ 1 = n, we have that the sum of the algebraic
multiplicity is also n because that this is the maximum degree of the characteristic polynomial. Because the
sum of the geometric multiplicities match match with the algebraic multiplicites–and correspond with each
other–we have that the characteristic polynomial must split because the degree of the irreducible g(t) in the
formula for the characteristic polynomial must be zero. Thus, by proving fT (t) splits and proving that the
algebraic and geometric multiplicities match, we have shown diagonalizability.

8 Eigenspace with Quotient Spaces

Let V be a vector space over F and T : V → V linear with eigenvalues λ1, . . . , λn, and such that
λi ̸= λj for i ̸= j. (You should assume that T has no other eigenvalues.)
a. Let E = Eλ1

denote the λ1 eigenspace. Let V/E denote the quotient vector space. Prove that
the function S : V/E → V/E defined for [v] ∈ V/E by S([v]) = [T (v)] is well-defined and linear.

Well-defined
Suppose [v] = [v′] ∈ V/E. We want to show that for these arbitrary two representations of an element

in V/E produce the same output when S is applied. Thus, we want to show that S([v]) = S([v′]). Note,
because [v] = [v′], we can say that v − v′ = w ∈ E by the definition of equivalence classes and similarity.
Let’s consider

S([v]) = [T (v)] def of S

= [T (v′ + w)] substitution

= [T (v′) + T (w)] linearity

= [T (v′)] + [T (w)] def of modulo addition

= [T (v′)] + [λ1w] applying T

= [T (v′)] + λ1[w] def of scalar multiplication

= [T (v′)] w is in E

= S([v′]) def of S
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Thus, we have shown two arbitrary representations of the same element produce the same result, showing
that S is well defined.

Linearity
Let’s suppose [v], [u] ∈ V/E and that α ∈ F . Consider

S([v] + λ[u]) = S([v + λu]) def. of modulo addition and scalar multiplication

= [T (v + λu)] def. of S

= [T (v) + λT (u)] linearity

= [T (v)] + λ[T (u)] def. of modulo addition and scalar multiplication

= S([v]) + λS([u]) def. of S

Thus, we have shown linearity.

b. Prove that λ2, . . . , λn are eigenvalues of S.

Suppose that each of λ2, . . . , λn has associated eigenvectors v2, . . . , vn where these are eigenvectors for
T . We can say that their respective equivalence classes may be eigenvectors for S because eigenvectors are
linearly independent and thus won’t collapse to zero in the quotient space. Consider for arbitrary 2 ≤ i ≤ n.

S([vi]) = [T (vi)] def. of S

= [λivi] def. of eigenvector

= λi[vi] def. of multiplication

Thus, for each eigenvector vi ∈ V for T , [vi] ∈ V/E is an eigenvector for S with the same associated
eigenvalue λi by the definition of an eigenvector/value for 2 ≤ i ≤ n.

9 Linear Independence of Eigenvectors

Let A be an n× n square matrix with n distinct eigenvalues λi, 1 ≤ i ≤ n. Suppose we have nonzero
eigenvectors vi, 1 ≤ i ≤ n, such that Avi = λivi. Show that the set β = {v1, v2, . . . , vn} is linearly
independent.

Let’s prove this by induction on n.
Base Case: (n = 1)
Consider a matrix A = [A11] and a set β = v1. Because v1 is a non-zero eigenvector, it is by definition

linearly independent.
Inductive Case:
Assume that A be an n−1×n−1 square matrix with n distinct eigenvalues λi, 1 ≤ i ≤ n−1. Suppose we

have nonzero eigenvectors vi, 1 ≤ i ≤ n−1, such that Avi = λivi. We have that the set β = {v1, v2, . . . , vn−1}
is linearly independent.

Now, let A be an n×n square matrix with n distinct eigenvalues λi, 1 ≤ i ≤ n. Suppose we have nonzero
eigenvectors vi, 1 ≤ i ≤ n, such that Avi = λivi. We want to show that the set β = {v1, v2, . . . , vn} is
linearly independent. Consider the following where ai are scalars.
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n∑
i=1

aivi = 0⃗ initial assumption

(†)
n−1∑
i=1

aivi + anvn = 0⃗ rewrite summation

T

(
n−1∑
i=1

aivi + anvn

)
= 0⃗ applying T

n−1∑
i=1

aiT (vi) + anT (vn) = 0⃗ linearity

(∗)
n−1∑
i=1

aiλivi + anλnvn = 0⃗ def. of eigenvector

Now, let’s also consider λn scaling †, producing

n−1∑
i=1

λnaivi + λnanvn = 0⃗

Finally, let’s subtract this from ∗ to produce:

n−1∑
i=1

aiλivi + anλnvn −

(
n−1∑
i=1

λnaivi + λnanvn

)
This simplifies to

n−1∑
i=1

(λi − λn)(aivi) = 0⃗

We already know that λi − λn ̸= 0 because each eigenvector is distinct. Thus, we can simply apply the
inductive step, apply the linear independence of the first n − 1 vectors, showing that each of ai = 0 for all
1 ≤ i ≤ n. Because all of these must be zero, we are left with

anvn = 0⃗

This directly implies an = 0 as well. Thus, we have shown linear independence, that
∑n

i=1 aivi = 0⃗ =⇒
ai = 0 ∀i.
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10 Degree of Characteristic Polynomial

Recall that, for A ∈ Mn×n(F ),
fA(t) := det(tIn −A).

We may view fA as an element in

Poly(F ) = {
k∑

i=1

ait
i | k ∈ Z, k ≥ 0, ai ∈ F}.

Recall also that, for g ∈ Poly(F ), if

g(t) =

k∑
i=0

ait
i

and ak ̸= 0, then
deg(g) := k.

a. Let A ∈ Mn×n. Prove, by induction on n, that deg(fA) = n.

Base Case: (n = 1)
Consider an arbitrary single-entry matrix A = [A11]. Then, by definition, fA(t) = t − A11. This by

definition has degree n = 1. Thus, we have proven our base case.

Inductive Case
Let’s assume deg(fAn−1

(t)) = n− 1. Thus, we can write fAn−1
(t) = a0 + a1t+ . . .+ an−1t

n−1. Now, let’s
consider how we would find fAn(t). We have

det(tIn −A) =

n∑
j=1

(−1)n+j(tIn −A)nj det((tIn −A)nj)

=

n−1∑
j=1

(−1)n+j(tIn −A)nj det((tIn −A)nj) + (tIn −A)nn det((tIn −A)nn)

Because there are the most terms with t in (tIn −A)nn of all the j values in the summation and (tIn−A)nn
contains a t term, we can ignore all other aspects of this expansion because they will not contribute to the
degree. Let’s simply consider

(tIn −A)nn · det((tIn −A)nn)

Here, (t − Ann) has degree 1 by definition, and thus, by the inductive hypothesis, it will be multiplied
by something with degree n− 1. We know from class that the degrees will add in this case, leaving us with
degree n, hence proving our claim.

b. Using the previous item and definitions, prove that if V is a vector space over F , dim(V ) = n and
T : V → V is linear, then deg(fT ) = n.

Since, we have proven that deg(fA) = n, we can simply set A = [T ]β where β is an arbitrary ordered basis.
By definition, since dim(V ) = n, this basis will have n vectors, and thus, [T ]β ∈ Mn×n(F ). Furthermore,
we know that the characteristic polynomial is closed to change of basis. Thus any basis should produce the
same result and this concept of assigning A to a singular representation is well defined. Therefore, directly
following from part A and these ideas, we can say that deg(fT ) = n.
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11 Sum of Subspaces

Let V a vector space over F , let r ≥ 1 be an integer, and let W1, . . . ,Wr ⊂ V be subspaces. The sum
of the subspaces is defined to be

W1 + . . .+Wr = {w1 + . . .+ wr |wi ∈ Wi}.

Definition (r-fold internal direct sum). We say that the sum W1 + . . . + Wr is an (internal)
direct sum if the representation of elements in W1 + . . .Wr is unique: if u1 + . . .+ ur = u′

1 + . . .+ u′
r

for ui, u
′
i ∈ Wi, then ui = u′

i for all 1 ≤ i ≤ r. If the sum is direct, we write W1 ⊕ · · · ⊕Wr instead of
W1 + · · ·+Wr.
a. Recall that we previously defined W1 + W2 to be a direct sum if W1 ∩ W2 = {⃗0}. Prove that
W1 ∩W2 = {⃗0} if and only if the definition above with r = 2 is satisfied.

This is a biconditional statement. Thus, let’s consider each implication separately.
Intersection zero definition implies general definition
Let’s assume that W1 ∩ W2 = {⃗0}. Let’s suppose that we have elements u1, u

′
1 ∈ W1 and u2, u

′
2 ∈ W2

such that u1 + u2 = u′
1 + u′

2. Consider

u1 + u2 = u′
1 + u′

2 assumption

u1 − u′
1 = u′

2 − u2 reorder and subtract with field axioms

Observe that u1 − u′
1 ∈ W1 and that u′

2 − u2 ∈ W2. Their equality implies that each indvidually equals
the zero vectors, i.e. u1−u′

1 = u′
2−u2 = 0⃗ =⇒ u1 = u′

1 and u2 = u′
2. Thus, we have shown one implication.

General definition implies intersection zero definition
Let’s asssume that if u1 + u2 = u′

1 + u′
2 for ui, u

′
i ∈ Wi, we have that ui = u′

i. So, let’s suppose that
x ∈ W1 ∩ W2. This implies that x ∈ W1 and x ∈ W2 by definition. We also know by additive inverses of
vectors and closure of the sum of subsapces, x− x = 0⃗ ∈ W1 +W2. However, we also know that 0⃗− 0⃗ = 0⃗.
Thus, by the unique representation of a vector in the direct sum of two subspaces, x must be the zero vector.
Therefore the intersection must be zero.

b. Let V = R2, W1 = span{(1, 0)}, W2 = span{(0, 1)}, and W3 = {(1, 1)}. Explain why W1 +W2,
W2 +W3, and W1 +W3 are direct sums, but W1 +W2 +W3 is not.

We have that

W1 = {(a, 0) | a ∈ R} W2 = {(0, b) | b ∈ R} W3 = {(c, c) | c ∈ R}

If we are to set these equal to each other on their own–excuse the abusive notation–we would have
something of the forms

(a, 0) = (0, b) =⇒ a = b = 0

This shows W1 ∩W2 = 0⃗

(a, 0) = (c, c) =⇒ c = 0 =⇒ a = 0

This shows W1 ∩W3 = 0⃗

(0, b) = (c, c) =⇒ c = 0 =⇒ b = 0

13



This shows W2 ∩W3 = 0⃗
Thus, sums of any two are direct sums. However, to show the sum of all three is not a direct sum, we

just need two distinct ways to represent it, i.e a counterexample. Let’s try

(1, 0) + (0, 1) + (2, 2) = (2, 0) + (0, 2) + (1, 1)

Above are two different ways to create (3, 3) which implies the sum W1 +W2 +W3 is not direct.

c. Let W1, . . . ,Wr be arbitrary subspaces of V (not necessarily with a sum that is direct). Con-
sider the vector space W1 × . . . ×Wr = {(w1, . . . , wr) |wi ∈ Wi}, with addition and scaling defined
component-wise. Prove that the transformation

T : W1 × . . .×Wr → W1 + . . .+Wr

given by

T (v1, . . . , vr) = v1 + . . .+ vr

is linear.

Let’s use our typical approach to linearity. Suppose λ ∈ F and that v = (v1, . . . , vr), u = (u1, . . . , ur) ∈
W1 × . . .×Wr. Consider

T (v + λu) = T ((v1, . . . , vr) + λ(u1, . . . , ur)) def of vectors

= T ((v1 + λu1, . . . , vr + λur)) component-wise addition and multiplication

= (v1 + λu1) + . . .+ (vr + λur) def. of T

= v1 + . . .+ vr + λ(u1 + . . .+ ur) component-wise addition and multiplication

= T (v) + λT (u) def. of T

Hence, we have shown linearity.

d. Prove that T is an isomorphism if and only if the sum W1 + . . .+Wr is an internal direct sum.

Isomorphism =⇒ Direct Sum
This direction is somewhat trivial. By the definition of an isomorphism, we have that T is both injective

and surjective. Therefore, let’s suppose that u1+ . . .+ur = u′
1+ . . .+u′

r for the two vectors in W1+ . . .+Wr.
We can see that

⇐⇒ T (u1, . . . , ur) = T (u′
1, . . . , u

′
r)

By injectivity,

=⇒ (u1, . . . , ur) = (u′
1, . . . , u

′
r)

which implies that ui = u′
i for all 1 ≤ i ≤ r. Thus, we have shown that T being an isomorphism implies

that W1 + . . .+Wr is an internal direct sum.

Direct Sum =⇒ Isomorphism
In this proof, we will show injectivity and surjectivity, meaning T is an isomorphism. Let’s suppose

x = (x1, . . . , xr), y = (y1, . . . , yr) ∈ W1 + · · ·+Wr such that T (x) = T (y). Consider

T (x) = T (y)
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x1 + . . .+ xr = y1 + . . .+ yr

which by the definition of direct sum implies that xi = yi for all 1 ≤ i ≤ r, showing that x = (x1, . . . , xr) =
(y1, . . . , yr) = y by the definition of equality.

Now, for surjectivity, let’s suppose that z ∈ W1 + · · · +Wr. Then, by the definition of a summation of
subspaces, z = w1+. . .+wr for some wi ∈ Wi for all i. Then, we claim that T (w1, . . . , wr) = w1+. . .+wr = z,
we can see this is true by the definition of T . Thus, we have proven surjectivity because for all w1+ . . .+wr,
we have that T (w1, . . . , wr) = w1 + . . .+ wr. Therefore, T is an isomorphism.

e. Suppose that V is finite-dimensional, so that W1, . . . ,Wr are also finite-dimensional vector spaces.
Prove that dim(W1 × . . .×Wr) = dim(W1) + . . .+dim(Wr). Using the previous item, conclude that
if W1 + · · ·+Wr is a direct sum, then dim(W1 + . . .+Wr) = dim(W1) + . . . dim(Wr).

Let’s consider a basis for W1 × . . .×Wr. A basis would consist of the individual bases for each subspace,
being say βi = {vi1, vi2, . . . , vik} where k is the specific number of basis vectors a βi had, possibly different
for each i. Now, a basis β for the entire iterative Cartesian product would consist of the union of all the
individual basis vectors each in its own component, i.e. in component i. By the component based definition
of the Cartesian Product, this directly follows as there is no overlap between how each βi is used in β. We
would thus define

β = ∪r
i=1

(
∪k
j=1(· · · 0⃗i−1, vij , 0⃗i+1, · · · )

)
This by definition has the union of all the bases of βi. This implies that dim(W1× . . .×Wr) = dim(W1)+

. . .+ dim(Wr).
Now, because T is an isomorphism as we proved, we can conclude that dim(W1 + . . .+Wr) = dim(W1 ×

. . .×Wr). Since we showed that dim(W1×. . .×Wr) = dim(W1)+. . .+dim(Wr), we can thus by substitiution
say that dim(W1 + . . .+Wr) = dim(W1) + . . . dim(Wr).

15


