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Textbook 2.3

Question 8:

(a) Give three examples of equations of the form ax = b in Z12 that have no nonzero solutions.

(b) For each of the equations in part (a), does the equation ax = 0 have a nonzero solution?

a. We have 2 ·x = 5, 4 ·x = 5, 6 ·x = 5. These equations all have no possible solutions. Each of 2, 4, 6 do
not have multiplicative inverses. But, more directly, we can simply check all possible values of x and none
of them hold.

b. They all have a non-zero solution, 6, 3, 2 respectively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 14: Let a, b, n ∈ Z with n > 1. Let d = (a, n) and assume d | b. Prove that the equation
[a]x = [b] has d distinct solutions in Zn as follows:

(a) Show that the solutions listed in Exercise 13(b) are all distinct. [Hint: [r] = [s] if and only if
n | (r − s).]

(b) If x = [r] is any solution of [a]x = [b], show that [r] = [ub1 + kn1] for some integer k with
0 ≤ k ≤ d − 1. [Hint: [ar] − [aub1] = [0] (Why?), so that n | (a(r − ub1)). Show that
n1 | (a1(r − ub1)) and use Theorem 1.4 to show that n1 | (r − ub1).]

a. We want to show that for [ub1 + sn1] ̸= [ub1 + tn2] for 0 ≤ s < t ≤ d − 1. This will show arbitrary
solutions from above our distinct. For contradiction, assume [ub1 + sn1] = [ub1 + sn2]

⇐⇒ n | ub1 + sn1 − ub1 − tn1

⇐⇒ n | sn1 − tn1

⇐⇒ n | n1(s− t)

⇐⇒ d | s− t

However, s− t < d. Thus, s− t = 0 =⇒ s = t. Therefore, each solution is distinct.
b. We know that [ar]− [b] = 0. We also know au+ nv = d and db1 = b. Hence

[ar]− [b] = 0

=⇒ [ar]− [db1] = 0

=⇒ [ar]− [b1][au+ nv] = 0 by given

=⇒ [ar]− [b1][au] = 0 because multiple of n
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=⇒ [ar]− [b1au] = 0

=⇒ n | ar − aub1

=⇒ n | a(r − ub1)

=⇒ n1 | a1(r − ub1) by dividing out by d

=⇒ n1 | r − ub1 by thm 1.4

Thus, we have that [r] = [ub1]. Thus, any solutions is of the form [r] = [ub1 + kn1] as additions of
multiples of n1 still satisfy our condition.

Textbook 3.1

Question 28: Let p be a positive prime, and let R be the set of all rational numbers that can be
written in the form r/pi with r, i ∈ Z, and i ≥ 0. Note that Z ⊆ R because each n ∈ Z can be written
as n/p0. Show that R is a subring of Q.

Suppose that n
pi ,

m
pj ∈ R. Then, n

pi +
m
pj = npj+mpi

pi+j . This is clearly in R as the numerator is an integer
and denominator is still a power of p. The same is true for n

pi · m
pj = nm

pi+j . We have shown closure under
addition and multiplication.

Thus, all that remains is to check that 0 ∈ R and that all additive inverses are also in R. Clearly, 0 ∈ Z.
Thus, 0

p = 0, which is the same zero as in Q. Hence, we confirmed this existence.

For an n
pi ∈ R, we know that −n ∈ Z, thus, −n

pi ∈ R. And by the definition of addition,

n

pi
+

−n

pi
=

n− n

pi
= 0

Hence, R is a subring.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 32: Let R be a ring, and let Z(R) = {a ∈ R | ar = ra for every r ∈ R}. In other words,
Z(R) consists of all elements of R that commute with every other element of R. Prove that Z(R) is
a subring of R. Z(R) is called the center of the ring R. [Exercise 31 shows that the center of M(R)
is the subring of scalar matrices.]

Suppose a, b ∈ Z(R). Then, ar = ra br = rb for all r ∈ R. Then, consider

r(a+ b) = ra+ rb = ar + br = (a+ b)r

Hence, addition is closed. Consider

r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r

Hence, multiplication is closed in Z(R) as well.
We also need to show that 0 ∈ Z(R). We can show that 0r = 0 = r0. Consider the following

0 + 0 = 0

=⇒ r(0 + 0) = r0

2



=⇒ r0 + r0 = r0

=⇒ r0 = 0 by additive inverse

and similarly,

0 + 0 = 0

=⇒ (0 + 0)r = 0r

=⇒ 0r + 0r = 0r

=⇒ 0r = 0 by additive inverse

Thus, we have that 0r = 0 = r0 and thus 0 ∈ Z(R). This holds true for any ring.
Lastly, suppose a ∈ Z(R). Then, we want to show br = rb where a+ b = 0. We know from immediately

prior that

r(a+ b) = 0 = (a+ b)r

By distributivity, we have

ra+ rb = ar + br

Then

ar + rb = ar + br

So

rb = br

Textbook 3.2

Question 26: Let S be a subring of a ring R. Prove that 0S = 0R. [Hint: For a ∈ S, consider the
equation a+ x = a.]

For a ∈ S, consider the equation a + x = a. By definition, x satisfies the property of 0S . We can add
the additive inverse of a to both sides, produces x = 0R. This relies on the uniquess of the additive identity.
Thus, 0S = 0R.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Question 32: Let R be a ring without identity. Let T be the set R × Z. Define addition and
multiplication in T by these rules:

(r,m) + (s, n) = (r + s,m+ n)

(r,m)(s, n) = (rs+ms+ nr,mn).

(a) Prove that T is a ring with identity.

(b) Let R consist of all elements of the form (r, 0) in T . Prove that R is a subring of T .

a. We need to show T is a ring and thus need to check a number of axioms. First consider closure
of (r,m) + (s, n) = (r + s,m + n). Each of R and Z are closed so this is still in T . The same is true of
(r,m)(s, n) = (rs+ms+nr,mn) as rs+ms+nr ∈ R, just scaled by integers. For addition, associativity and
commutativity automatically follows from the associativity in R and Z. The same is true of the existence of
the additive identity and inverse, i.e., (r,m) + (0R, 0) = (r,m) and (r,m) + (−r,−m) = (0R, 0). Thus, all
we have to really check is the multiplication related axioms. Consider

Associativity of Multiplication For any (r,m), (s, n), (t, d) ∈ T ,

[(r,m)(s, n)](t, d) = (rs+ms+ nr,mn)(t, d)

=
(
(rs+ms+ nr)t+mn · t+ d(rs+ms+ nr),mn · d

)
= (rst+mst+ nrt+mnt+ drs+ dms+ dnr,mnd)

We also have that

(r,m)[(s, n)(t, d)] = (r,m)(st+ nt+ ds, nd)

=
(
r(st+ nt+ ds) +m(st+ nt+ ds) + nd · r,m · nd

)
= (rst+ rnt+ rds+mst+mnt+mds+ ndr,mnd)

Both expressions simplify to the same result, given that elements in Z commute. Hence, multiplication is
associative in T .

Distributivity: For any (r,m), (s, n), (t, d) ∈ T ,

(r,m)[(s, n) + (t, d)] = (r,m)(s+ t, n+ d)

= (r(s+ t) +m(s+ t) + (n+ d)r,m(n+ d))

= (rs+ rt+ms+mt+ nr + dr,mn+md)

But also,

(r,m)(s, n)+(r,m)(t, d) = (rs+ms+nr,mn)+(rt+mt+dr,md) = (rs+ rt+ms+mt+nr+dr,mn+md)

Thus, we have distributivity from the left hand side. Distributivity from the right hand side follows from
essentially the same computation. Therefore, we have distributivity.

Identity Element: I claim that (0R, 1) satisfies the identity element. We can check

(r,m)(0R, 1) = (r · 0R +m · 0R + 1 · r,m · 1) = (0R + 0R + r,m) = (r,m)

(0R, 1)(r,m) = (0R · r + 1 · r +m · 0R, 1 ·m) = (0R + r + 0R,m) = (r,m)

Thus, (0R, 1) is the identity element in T .
Hence, T is a ring with identity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b. We need to check the four subring axioms
Non-emptiness: (0R, 0) ∈ S since 0R ∈ R, which is the same additive identity checked above.
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Closure under Addition: For any (r, 0), (s, 0) ∈ S,

(r, 0) + (s, 0) = (r + s, 0 + 0) = (r + s, 0) ∈ S

Closure under Multiplication: For any (r, 0), (s, 0) ∈ S,

(r, 0)(s, 0) = (rs+ 0 · s+ 0 · r, 0 · 0) = (rs, 0) ∈ S

Additive Inverses: For any (r, 0) ∈ S, its additive inverse is (−r, 0), which is also in S.
Hence, S is a subring of T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 40: An element a of a ring is nilpotent if an = 0R for some positive integer n. Prove that
R has no nonzero nilpotent elements if and only if 0R is the unique solution of the equation x2 = 0R.(
=⇒

)
This direction is relatively trivial. Assume that R has no nonzero nilpotent elements. This means

that an ̸= 0R for all a ∈ R. Take n = 2. Then, 0R is the unique solution of the equation x2 = 0R.(
⇐=

)
Assume 0R is the unique solution of the equation x2 = 0R. Then, consider an = 0. We need to

show that for all n ≥ 1, a must be the zero element for this to hold. We can consider our smaller cases n = 1
is trivially true and n = 2 is true by our given. We will show this is true for higher n by contradiction.

For contradiction, assume there exists an n ∈ N such that an = 0 but a ̸= 0. By the WOP, we can choose
n to be minimal. However, then, we have that (an−1)2 = 0 but a ̸= 0 necessarily as 2n− 2 ≥ n for all n ≥ 2.
But, by our given, we have that

an−1 · an−1 = 0 =⇒ an−1 = 0

This contradicts the minimality of n. Thus, such an n ∈ N such that an = 0 but a ̸= 0 does not exist.
Hence, R has no nonzero nilpotent elements. We have shown both directions of the proof and are therefore
done.
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