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1 Textbook 1.2

Question 12: Suppose that (a, b) = 1 and (a, c) = 1. Are any of the following statements false?

i. (ab, a) = 1

ii. (b, c) = 1

iii. (ab, c) = 1

For (i), this statement is false. (ab, a) = |a|. We can show this by corollary 1.3. |a| trivially divides a and
|a| divides ab, with a factor of ±b. Furthermore, if c | |a|, then, c | a trivially and, with just another factor
of b, c | ab. Thus, by corollary 1.3, (ab, a) = |a|.

For (ii), this statement is false. We can choose a counterexample. (a = 2, b = 3) = 1 and (2, c = 9) = 1.
However, (3, 9) = 3 as 3 = 3× 1 and 9 = 3× 3.

For (iii), this statement is also false. We can choose a counterexample. (a = 2, b = 3) = 1 and
(2, c = 9) = 1. However, (2× 3, 9) = 3.

=⇒ None of the statements are true.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 24: Let a, b, c ∈ Z. Prove that the equation ax+ by = c has integer solutions if and only
if (a, b) | c

(
=⇒

)
Assume ax+ by = c has integer solutions. Let d = (a, b). Since, d | a and d | b by the definition

of the greatest common divisor, we have that there exists an a′, b′ ∈ Z such that da′ = a and db′ = b. Thus,
d(a′ + b′) = c so d | c.(

⇐=
)
This direction directly follows from Bezout’s Identity. Assume d = (a, b) | c. Then, there exist

x0, y0 ∈ Z such that ax0 + by0 = d. However, since d | c, there exists a k ∈ Z such that kd = c. Therefore,
ax0k + by0k = kd = c. Therefore, for x = kx0 and y = ky0, we are done.

2 Textbook 1.3

Question 16: Prove that (a, b) = 1 if and only if there is no prime p such that p | a and p | b

(
=⇒

)
Assume (a, b) = 1. Assume for contradiction that there existed a prime p ≥ 2 such that p | a and

p | b. Then, (a, b) ≥ p ≥ 1.
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(
⇐=

)
Assume there is no prime p such that p | a and p | b. Assume for contradiction, (a, b) = d > 1.

Then, d = q1×· · ·×qn for qi prime by the Fundamental Theorem of Arithmetic. Then, take q1. q1 | d. Thus
by the transitivity of divisibility, q1 | a and q1 | b. Thus, we are done by contradiction and (a, b) = 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 32: (Euclid) Prove that there are infinitely many primes

Suppose for contradiction there exist only finitely many primes p1, . . . , pn. Then, consider d = p1 × · · · ×
pn + 1. Each of pi ∤ d. Then, either d is prime, which is a contradiction. Otherwise, d cannot be broken
into a product of primes as it is divisible by none of them. This contradicts the Fundamental Theorem of
Arithmetic. Therefore, there exist infinitely many primes.

3 Textbook 2.1

Question 14:

i. Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n).

ii. Do part (a) when n is prime

For (i), this statement is false. Consider a counterexample. 2× 3 ≡ (mod 6). However, 2 ̸≡ 0 (mod 6)
and 3 ̸≡ 0 (mod 6).

For (ii), this statement becomes true where n is prime. n | ab implies that nm = ab for some m ∈ Z.
Then, we can consider two cases. Either the (n, a) = 1 or (n, a) = n because n is prime, meaning its only
divisors are ±1,±n. If (n, a) = n, we are done because then n | a =⇒ a ≡ 0 (mod n). If (n, a) = 1, by
theorem 1.4, n | b =⇒ b ≡ 0 (mod n). Thus, we have shown that ab ≡ 0 (mod p), then a ≡ 0 (mod p) or
b ≡ 0 (mod p) for prime p.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 22:

i. Give an example to show that the following statement is false: If ab ≡ ac (mod n) and a ̸≡ 0
(mod n), then b ≡ c (mod n).

ii. Prove that the statement is true whenever (a, n) = 1

For (i), we can consider the case when a ≡ 2 (mod 4), b ≡ 3 (mod 4), c ≡ 1 (mod 4). Then, we have
that ab ≡ 2 (mod 4) and ac ≡ 2 (mod 4). However, 3 ̸≡ 1 (mod 4), proving this statement is false.

For (ii), we have that n | ab− ac. Thus, n | a(b− c). By theorem 1.4 again, because (n, a) = 1, we have
that n | b− c. Thus, by definition, b ≡ c (mod n).
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