Math 110A Homework 1

Brendan Connelly

Monday, January 20, 2025

1 Textbook 1.2

Question 12: Suppose that (a, b) = 1 and (a, c) = 1. Are any of the following statements false?

i. (ab, a) = 1

ii. (b, c) = 1

iii. (ab, c) = 1

For (i), this statement is false. (ab, a) = |a|. We can show this by corollary 1.3. |a| trivially divides a and |a| divides ab, with a factor of $\pm b$. Furthermore, if $c \mid |a|$, then, $c \mid a$ trivially and, with just another factor of b, $c \mid ab$. Thus, by corollary 1.3, (ab, a) = |a|.

For (ii), this statement is false. We can choose a counterexample. (a = 2, b = 3) = 1 and (2, c = 9) = 1. However, (3, 9) = 3 as $3 = 3 \times 1$ and $9 = 3 \times 3$.

For (iii), this statement is also false. We can choose a counterexample. (a = 2, b = 3) = 1 and (2, c = 9) = 1. However, $(2 \times 3, 9) = 3$.

 \implies None of the statements are true.

Question 24: Let $a, b, c \in \mathbb{Z}$. Prove that the equation ax + by = c has integer solutions if and only if $(a, b) \mid c$

 (\implies) Assume ax + by = c has integer solutions. Let d = (a, b). Since, $d \mid a$ and $d \mid b$ by the definition of the greatest common divisor, we have that there exists an $a', b' \in \mathbb{Z}$ such that da' = a and db' = b. Thus, d(a' + b') = c so $d \mid c$.

 (\Leftarrow) This direction directly follows from Bezout's Identity. Assume d = (a, b) | c. Then, there exist $x_0, y_0 \in Z$ such that $ax_0 + by_0 = d$. However, since d | c, there exists a $k \in \mathbb{Z}$ such that kd = c. Therefore, $ax_0k + by_0k = kd = c$. Therefore, for $x = kx_0$ and $y = ky_0$, we are done.

2 Textbook 1.3

Question 16: Prove that (a, b) = 1 if and only if there is no prime p such that $p \mid a$ and $p \mid b$

 (\Longrightarrow) Assume (a,b) = 1. Assume for contradiction that there existed a prime $p \ge 2$ such that $p \mid a$ and $p \mid b$. Then, $(a,b) \ge p \ge 1$.

 (\Leftarrow) Assume there is no prime p such that $p \mid a$ and $p \mid b$. Assume for contradiction, (a, b) = d > 1. Then, $d = q_1 \times \cdots \times q_n$ for q_i prime by the Fundamental Theorem of Arithmetic. Then, take q_1 . $q_1 \mid d$. Thus by the transitivity of divisibility, $q_1 \mid a$ and $q_1 \mid b$. Thus, we are done by contradiction and (a, b) = 1.

Question 32: (Euclid) Prove that there are infinitely many primes

Suppose for contradiction there exist only finitely many primes p_1, \ldots, p_n . Then, consider $d = p_1 \times \cdots \times p_n + 1$. Each of $p_i \nmid d$. Then, either d is prime, which is a contradiction. Otherwise, d cannot be broken into a product of primes as it is divisible by none of them. This contradicts the Fundamental Theorem of Arithmetic. Therefore, there exist infinitely many primes.

3 Textbook 2.1

Question 14:

- i. Prove or disprove: If $ab \equiv 0 \pmod{n}$, then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.
- ii. Do part (a) when n is prime

For (i), this statement is false. Consider a counterexample. $2 \times 3 \equiv \pmod{6}$. However, $2 \not\equiv 0 \pmod{6}$ and $3 \not\equiv 0 \pmod{6}$.

For (ii), this statement becomes true where n is prime. $n \mid ab$ implies that nm = ab for some $m \in \mathbb{Z}$. Then, we can consider two cases. Either the (n, a) = 1 or (n, a) = n because n is prime, meaning its only divisors are $\pm 1, \pm n$. If (n, a) = n, we are done because then $n \mid a \implies a \equiv 0 \pmod{n}$. If (n, a) = 1, by theorem 1.4, $n \mid b \implies b \equiv 0 \pmod{n}$. Thus, we have shown that $ab \equiv 0 \pmod{p}$, then $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$ for prime p.

Question 22:

- i. Give an example to show that the following statement is false: If $ab \equiv ac \pmod{n}$ and $a \not\equiv 0 \pmod{n}$, then $b \equiv c \pmod{n}$.
- ii. Prove that the statement is true whenever (a, n) = 1

For (i), we can consider the case when $a \equiv 2 \pmod{4}$, $b \equiv 3 \pmod{4}$, $c \equiv 1 \pmod{4}$. Then, we have that $ab \equiv 2 \pmod{4}$ and $ac \equiv 2 \pmod{4}$. However, $3 \not\equiv 1 \pmod{4}$, proving this statement is false.

For (ii), we have that $n \mid ab - ac$. Thus, $n \mid a(b - c)$. By theorem 1.4 again, because (n, a) = 1, we have that $n \mid b - c$. Thus, by definition, $b \equiv c \pmod{n}$.