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1 Intuition on Fundamental Theorem of Algebra

Let P (z) = 2 + 3z2. Find α ̸= 0, α ∈ C such that

|P (i+ αt)| ≤ |P (i)|

for all sufficiently small positive t ∈ R.

We want to consider the function P (z) = 2 + 3z2. We can draw a picture of P (z) evaluated at z = i.
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In this situation, we can see that the magnitude of P (z) would be decreasing if it started its initial
rotation further down the imaginary axis. Thus, if we decrease the imaginary component of z, we will have
|P (z)| < 1. We can clearly do this by trying to negate |i|. Thus, we can choose an α = −i. Then, with

sufficiently small t, |P (i + αt)| ≤ |P (i)|. This works for all 0 < t ≤
√

2
3 . Graphically, it is easy to see that

as t grows from 0 to
√

2
3 . It will slowly grow closer and closer down the axis until it reaches 0.

We can see this algebraically too. Let’s suppose from the geometric interpretation and solution that ci
is a zero of the polynomial where c ∈ R. Then, we have that

0 = P (ci)

= 2 + 3(ci)2

= 2− 3c2

=⇒ c =

√
2

3

1



This verifies that P (i
√

2
3 ) = 0 which helps demonstrate the Fundamental Theorem of Algebra and the

intuition behind it.

2 Euclidean Algorithm

a. Find P1(x) and P2(x) such that

(x− 2)2P1(x) + (x− 3)2P2(x) = 1

where P1 and P2 are polynomials.

Applying the Euclidean Algorithm, we have (x− 3)2:

(x− 3)2 = x2 − 6x+ 9 = x2 − 4x+ 4 + (−2x+ 5)

Applying it again,

x2 − 4x+ 4 = −x

2
(−2x+ 5)− 3x

2
+ 4

Now, let’s apply the equation for −2x+ 5 and − 3x
2 + 4:

−2x+ 5 =
4

3

(
−3x

2
+ 4

)
− 1

3

Working backwards, we can reverse engineer to solve for P1, P2

1 = 4

(
−3x

2
+ 4

)
− 3(−2x+ 5)

Making our first substitutions:

1 = 4
(
x2 − 4x+ 4

)
+

x

2
(−2x+ 5)− 3(−2x+ 5)

Recombining:
1 = 4

(
x2 − 4x+ 4

)
+ (2x− 3)(−2x+ 5)

Substituting again:
1 = 4(x− 2)2 + (2x− 3)

(
(x− 3)2 − (x− 2)2

)
Thus:

1 = (4− 2x+ 3)(x− 2)2 + (2x− 3)(x− 3)2

Finally, we get:
1 = (−2x+ 7)(x− 2)2 + (2x− 3)(x− 3)2

This means our functions are

P1(x) = −2x+ 7 P2(x) = 2x− 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b. How did you know part (a) was possible without actually finding P1, P2?
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I knew part (a) was possible without actually finding P1, P2 because the gcd(P1, P2) is a 1 (or really any
constant function). By Euclid and the results of the Euclidean Algorithm, we showed that there must exist
such functions because the Euclidean algorithm is always possible, and thus we can always reverse it to find
our desired solutions.

3 Equivalence Classes and Groups

Suppose G is a finite group and a ∈ G is an element of order k, i.e., ak = e but al ̸= e if 1 ≤ l ≤ k.
a. Define a relation on G : g1 ∼ g2 if there exists a non-negative integer m such that g1a

m = g2.
Prove that ∼ is an equivalence relation.

We need to check reflexivity, symmetry, and transitivity.

Reflexivity
We can take a0 = e. Suppose g ∈ G, we know that ga0 = ge = g. Thus, g ∼ g.

Symmetry
Suppose g1, g2 ∈ G such that g1 ∼ g2. By definition, this means that there exists an m ∈ N such that

g1a
m = g2. We can multiply both sides by (am)−1 = a−m = ak−m. This gives us

g1am(am)−1 = g1 = g2a
k−m

Thus, there exists an m′ = k −m ≥ 0 such that g2a
m′

= g1.

Transitivity
Suppose that x, y, z ∈ G such that x ∼ y and y ∼ z. Then, we have that there exists an m,m′ ≥ 0 such

that xam = y and yam
′
= z. By substitution, we have that

(xam)am
′
= z

We can use associativity

x(amam
′
) = x(am+m′

) = z

If m+m′ ≥ k, we can say that am+m′
= am+m′−k but this is not necessary for the definition of our given

equivalence relation. In either case, we now have an m′′ = m+m′ such that

xam
′′
= z

This implies that x ∼ z. Thus, our relation is transitive. We are now done and have showed the relation
is an equivalence relation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b. Show that the equivalence classes of ∼ all have exactly k elements

The equivalences classes of an arbitrary x ∈ G are defined to be

[x] = {y | x ∼ y}
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But, by how we defined our equivalence relation, this can also be described by

[x] = {y | ∃m ∈ N ∪ {0} : xam = y}

But, by the given order of a, we have that elements after ak−1 repeat, i.e., ak = a0, ak+1 = a1. Thus, for
any given x, the elements in its equivalence class are all of xai for all 0 ≤ i < k. This is k options. Thus, an
arbitrary x has k elements in its equivalence class,

[x] = {x, xa, xa2, . . . , xak−1}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c. Deduce that k
∣∣ ord(G)

Equivalence classes are disjoint. Every element in G needs to belong to an equivalence class. Here is a
short proof of this. Suppose a ∈ [x] and a ∈ [y]. Then, we have that x ∼ a for some x ∈ [x] and a ∼ y for
some y ∈ [y]. Note, we did apply symmetry in our assumption. By transitivity, we have that x ∼ y. Then,
we have that [x] = [y]. Thus, equivalence classes are disjoint.

We also know that G is finite. That means there must exist some integer n ∈ Z+ equivalence classes.
Then, we have that there are kn elements in G. Thus, since G = kn, we have that k

∣∣ ord(G).

4 Polynomial Modular an Irreducible

Let F = R[x]/ ∼ where P (x) ∼ Q(x) means that P −Q is divisible by x2 + 2x+ 6.
a. Show that F is a field.

First, we should note that G(x) = x2 +2x+6 is irreducible over R and thus ”prime” from the quadratic
formula b2 − 4ac = 4− 24 < 0 =⇒ irreducible.

Next, we should note that we already know that R[x] is ring. The properties of the ring would be
preserved modding the equivalence relation. Thus, to show that F is a field, we just need to show that F
has a multiplicative inverse.

So, let’s consider an arbitrary P (x). By the (repeated) application of the Euclidean Algorithm for
polynomials, we can write

[P (x)] = [G(x) ·Q(x) +R(x)] = [G(x) ·Q(x)] + [R(x)] = [0] + [R(x)] = [R(x)]

for some Q,R ∈ R[x]. However, it is important to note that the Euclidean Algorithm gives us that R(x)
has degree less than 2 and thus can be written as R(x) = ax + b for some a, b ∈ R. This is easy to show.
Assuming this is false, R(x) would have some degree 2 term. But, then we could scale G(x) to cancel out
the square. The same process could be applied to terms about x2. This fact is an essential part of the idea
behind this field. Thus, we only need to find inverses (below cx+ d will be the inverse for R(x) such that

[ax+ b] · [cx+ d] = [1]

By the definition of multiplication, we have

[acx2 + x(ad+ bc) + bd] = [1]

We need to replace acx2 with ac(−2x − 6) because they are equivalent in our modulo. Then, we have
the system
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{
−2ac+ ad+ bc = 0

−6ac+ bd = 1

For a, b not both zero, this system of equations will clearly have a solution. We can see this by looking
at the determinant of the matrix representing the system.(

−2a+ b a
−6a b

)
The determinant of this matrix is −2ab+b2+6a2. Basic facts of inequalities shows us that a2+b2 ≥ 2ab.

Thus, this determinant will always be greater than zero unless both a, b = 0. This means we will always have
an inverse unless R(x) = 0. Therefore, we have proven that F = R[x]/ ∼, which inherited the properties of
a ring from R[x] is also a field by showing the existence of a multiplicative inverse.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b. Show that there exists an α ∈ F such that α2 + 1 = 0.

Let’s suppose that α = ax+ b ∈ F such that α2 + 1 = 0.

[(ax+ b)(ax+ b)] = [(a2x2 + 2abx+ b2]

= [a2(−2x− 6) + 2ab+ b2] substituting using G(x)

= [(2ab− 2a2)x+ (b2 − 6a2)]

Then, if we add one and equate our equation to zero(i.e., attempt to satisfy our goal), we end up with
the system {

2ab− 2a2 = 0

b2 − 6a2 + 1 = 0

Factoring the first equation, we have that a = 0 which clearly does not work, or we have that a = b.
Substituting into our next equation, we have that 5a2 = 1 =⇒ a = b = 1√

5
. Thus, we can say that

α =
1√
5
(x+ 1) =⇒ α2 + 1 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c. Deduce that F is really C in effect. Part of the problem is deciding what that means.

We know that C is defined as pairs of reals with specific operations. This is isomorphic to R2 and to
P1(R). And this is essentially what we have. The main difference between C and what was just listed–aside
from those are vector spaces and not fields–is that there is a solution to x2+1 = 0. This is important because
we clearly have some form of P1(R) with some added structure. We have shown that F is a field like C. It
is also clear that every element in F can be written as some d ∈ R + λα. We already established that any
element in F can be written as ax+b. Now, if we write it in terms of d+λα, we can simply let λ scale to the
coefficient of whatever element we want in F and then adjust our remaining ”real” component–corresponding
to a–by d. This is exactly how C is defined. Thus, F is essentially the same field as C.
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5 Vector Spaces

Suppose F is a field and E is another field with F ⊂ E and F has the same operations as E, just
restricted to F .
a. Explain how E becomes a vector space over F

We can treat elements in F as scalars. We can define addition as it is defined in the larger field E with
any elements in E. We can define scalar multiplication as individual multiplications in E. Any element in
F times an element in E will remain in E since E is a field. Any elements in E are closed under addition.
All the vector space axioms from this logic. Distributivity, associativity, and commutativity all field axioms
and thus our vector space satisfies these as well. The only thing left to check is the existence of identities
and additive inverses. We know that 1 ∈ E satisfies the multiplicative identity. Because fields have additive
inverses, the vector space would as well. Thus, E can become a vector space over F .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b. Suppose that the dimension of E over F is finite. Deduce that for each α ∈ E, there exists a
polynomial P (x) with coefficients in F such that P (α) = 0 and degree of P can be chosen to be less
than or equal to the dimension of E over F .

Assuming that the dimension of E over F is finite, we can suppose that the dimension is n.
In order to construct our polynomial, let’s consider {1, α, α2, . . . , αn}. All of the elements in this set

must be in E. But also, because the dimension is n, there must exist a non-trivial dependence relation for
a power of α by some collection of the other terms. This is a consequence of the Replacement Theorem. In
symbols, we have that there exists bo, b1, . . . , bn ∈ F such that

b0 + b1α+ b2α
2 + . . .+ bnα

n = 0

Because this set has n + 1 elements, we know that they are linearly dependent and bi ̸= 0 for some i.
Thus, we have that there exists a nontrivial polynomial P (x) with coefficients in F–which correspond to the
scalars in our dependence relation such that

P (x) = b0 + b1x+ b2x
2 + . . .+ bnx

n

Our work has thus shown that

P (α) = 0

6 Dimensions of Vector Spaces

Prove that if F1, F2, F3 are fields with F1 ⊂ F2 ⊂ F3 and F3 is finite dimensional over F1, then

dim(F3 over F1) = dim(F3 over F2) · dim(F2 over F1)

Suppose that dim(F3 over F2) = n and that dim(F2 over F1) = m. We can choose bases β, γ for the two
vector spaces respectively
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β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm}

Suppose that x ∈ F3. We then have that

x =

n∑
i=1

aivi

for scalars ai ∈ F2. But, we can use our knowledge of the middle field as a vector space over the smallest
field to rewrite each of these scalars. For each ai, we have that

ai =

m∑
j=1

bjwj

for elements bj ∈ F1. Substituting, we have

x =

n∑
i=1

(

m∑
j=1

bijwj)vi

Thus, let’s claim that δ = {viwj | 1 ≤ i ≤ n and 1 ≤ j ≤ m} is a basis for our vector space F3 over F1.
From above, we clearly have that δ generates F3 because we found a linear combination that corresponds
with every vector. We only need to show linear independence. If we consider this same expression and set
it equal to the zero vector, we have

n∑
i=1

(

m∑
j=1

bijwj)vi = 0⃗

By the linear independence of β, we know that each of the ai = 0⃗, which means that we have that for
each of

∑m
j=1 bijwj , we have that

m∑
j=1

bijwj = 0⃗

But, we already know that γ is linearly independent. Thus, each bij must be zero for all i ≤ n and 1 ≤
j ≤ m. This implies that δ is linearly independent. We have shown that δ spans F3 by construction, and
now we have shown it is linearly independent. Thus, the dimension of F3 over F1 is clearly n times m, the
number of basis vectors in δ. Thus, we have shown that for arbitrary fields such that F1 ⊂ F2 ⊂ F3 and F3

is finite dimensional over F1, then

dim(F3 over F1) = dim(F3 over F2) · dim(F2 over F1)

7 Showing an Element is not in Q(
√
2)

Use these ideas to show that 3
√
2 /∈ Q(

√
2)

Consider the field extension, Q( 3
√
2). If 3

√
2 ∈ Q(

√
2), then we must have that Q( 3

√
2) ∈ Q(

√
2). However,

from our discussion above, we can leverage the fact that the dimension of Q( 3
√
2) over Q is three and the

dimension of Q(
√
2) is two. We just need to show that Q( 3

√
2) is a field. Like above, this inherits a ring

structure from its definition. We need to show that division is well-defined, i.e., that all elements have
multiplicative inverses. We should know this is true because this is simply Q[x]/(x3−2). We also know that
x3− 2 is irreducible over Q and thus this will produce a field. However, we should show that the polynomial
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structure of Q[x]–which gives it a commutative ring structure–does indeed endow it with multiplicative
inverses. We thus want to show for arbitrary a+ b 3

√
2 + c 3

√
4 where a, b, c ∈ Q, we have that

1

a+ b 3
√
2 + c 3

√
4
= A+B

3
√
2 + C

3
√
4

This is equal to

(a+ b
3
√
2 + c

3
√
4) · (A+B

3
√
2 + C

3
√
4) ≡ 1 mod (x3 − 2)

Because x3 − 2 is irreducible over Q, we have by the Euclidean Algorithm that such an A+B 3
√
2+C 3

√
4

exists since the gcd(a+ bx+ cx2, x3 − 2). Thus, the multiplicative inverse exists.
Now, we can apply our previous ideas. If 3

√
2 was inQ(

√
2), then we would have thatQ( 3

√
2) ⊂ Q(

√
2). But

because the dimension of Q( 3
√
2) over Q is three and the dimension of Q(

√
2) is two, we have a contradiction.

More precisely, Q(
√
2) would have to equal Q( 3

√
2,
√
2)) which would then have dimension six which is yet

again a contradiction. Thus, we have shown that 3
√
2 /∈ Q(

√
2).

8 Direct Proof that an Element is not in Q(
√
2)

Show 3
√
2 /∈ Q(

√
2) directly. Hint: if (a+ b

√
2)3 = 2, then what is (a− b

√
2)3

If we suppose that 3
√
2 ∈ Q(

√
2), we have that (a+ b

√
2)3 = 2 for some a, b ∈ Q. Now, lets expand.

2 = (a+ b
√
2)3 = a3 + 3a2b

√
2 + 6ab2 + 2b3

√
2

Because a, b ∈ Q, we have that

a3 + 6ab2 = 2 3a2b+ 2b3 = 0

If we consider that second equation, we have that b(3a2 +2b2) = 0. One solution is clearly that b = 0. If
b = 0, we have that a3 = 2 for some rational number a. We know that this does not have a rational solution.

Thus, b = 0 is impossible. We can also consider 3a2 + 2b2 = 0, we have that a2

b2 = −2
3 . However, this is also

a contradiction because the left hand side must be positive and the right hand side is negative. Therefore,
we cannot have 3

√
2 /∈ Q(

√
2). (a+ b

√
2)3 = 2 = (a− b

√
2)3 which does not work and is thus a contradiction.

Briefly, it is worth noting we can see this even more clearly when we add these expanded equations together
and have that a3 + 6ab2 = 2. When b = 0, this clearly will not have a solution for a ∈ Q. In either case, we
are done.
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