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1 Linear Algebra

Augmented Matrix
An augmented matrix for a system of m equations in n variables is a rectangular array with m rows and
n+ 1 columns which stores all the coefficients of the system. It is given by

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm



Gaussian Elimination Objectives
Suppose we are playing a game called Gaussian Elimination with the following rules:

(I) There are three legal moves (so-called elementary row operations) which we can use to transform our
augmented matrix.

(II) First, get the matrix to Row Echelon Form.

(III) Next, transform the matrix into Reduced Row Echelon Form.

(IV) Read off solutions.

Elementary Row Operations
The following are the elementary row operations:

(1) Row Switching: A row in the matrix can be switched with another row in the matrix. Ri ↔ Rj .

(2) Row Multiplication: A row can be multiplied by a non-zero constant. αRi → Ri.

(3) Row Addition: A row can be replaced with the sum of that row and a multiple of another row.
Ri + αRj → Ri.

Note: Row operations are limited by the required property that they be reversible.

Row Echelon Form
An augmented matrix is in row echelon form (REF) if

1. Every row with nonzero entries is above every row with all zeroes (if there are any).

2. The leading coefficient (i.e., the leftmost nonzero entry) of a nonzero row is to the right of the leading
coefficient of the row above it.
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Note: Given an augmented matrix in REF, a pivot is a leading coefficient in a nonzero row.

Reduced Row Echelon Form
An augmented matrix is in reduced row echelon form (RREF) if

1. It is in row echelon form (REF).

2. Every pivot (the leading coefficient in a nonzero row) is 1.

3. Every entry above a pivot is 0.

Pivot and Free Variables

X1 X2 Xi Xn
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


Pivot variables are variables Xi such that the column they are associated with has a pivot. Free variables

are variables whose columns do have a pivot. Free variables take arbitrary values and can be represented in
the following way

Xi = s ∈ R
Then, the pivot variables can be written in terms of the free variables.

Solution of a System of Linear Equations
Given a system of equations, exactly one of the following three things will happen:

1. The system has zero solutions (i.e., it is inconsistent). This happens when the RREF contains a row
of the form

[0 · · · 0 | 1]
because this corresponds to the equation 0 = 1 which can never be true.

2. The system has exactly one solution. This happens when the system is consistent and there are no
free variables in the RREF.

3. The system has infinitely many solutions. This happens when the system is consistent and there is at
least one free variable in the RREF.

Rank
We define the rank of a matrix to be the number of pivots any REF of that matrix has (it will be the same
number even though there could be many different REFs).

The system is inconsistent if the rank of the coefficient matrix is not equal to the rank of the entire
augmented matrix. The system has exactly one solution if the rank of the augmented matrix is equal to the
number of columns in the coefficient matrix. The system has infinitely many solutions if the rank of the
augmented matrix is less than the number of columns in the coefficient matrix.

Nice Set
We call a set D ⊆ R nice if it is an interval or a union of a sequence of intervals, i.e., if there exists a
sequence of intervals I0, I1, I2, . . . such that

D =
⋃
n≥0

In
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2 First-order Differential Equations

Implicit Differential Equation of Order r
An implicit differential equation (of order r) is an equation which can be written in the form

F (t, y, y′, y′′, . . . , y(r)) = 0

where F is a real-valued function of r + 2 variables. The order is the order r of the highest derivative y(r)

of y which appears in the equation.
A solution to the above equation is a function y : I → R (where I ⊆ R is an interval) which is differentiable

at least r times such that
F (t, y(t), y′(t), . . . , y(r)(t)) = 0

for every t ∈ I, i.e., for every t ∈ I, when you plug t, y(t), y′(t), . . . , y(r)(t) into the function F the output is
zero.

Normal Form of a Differential Equation
A differential equation of order r in normal form (or an explicit differential equation of order r) is a
differential equation which can be written in the form

y(r) = F (t, y, y′, y′′, . . . , y(r−1))

where F is a real-valued function of r+1 variables. A solution of the above equation is a function y : I → R
(where I ⊆ R is an interval) which is at least r times differentiable, such that for every t ∈ I:

y(r)(t) = F (t, y(t), y′(t), . . . , y(r−1)(t))

Thus, an explicit first-order differential equation would take the form

y′ = F (t, y)

First Order Linear Differential Equation Form
A first-order linear differential equation is a differential equation which can be written in the form:

y′ + f(t)y = g(t)

where f and g are real-valued functions of the variable t. The functions f(t) and g(t) are called the coefficient
functions. This has the following subcategories, specialized beyond the general form

1. Direct Integration: This is the case when f(t) = 0 for all t. The solution may be achieved by simply
integrating both sides with respect to t. It has the following form

y′ = g(t)

2. Homogeneous: This is the case when g(t) = 0 for all t and f(t) is potentially non-zero. It has the
following form

y′ + f(t)y = 0

• This requires multiplication by an integrating factor µ(t) := exp
(∫

f(t) dt
)

• The solution takes the form y(t) = y(t;C) = C
µ(t) = C exp

(
−
∫
f(t) dt

)
Solution to General Form of a First Order Linear Equation
Suppose f : D → R and g : E → R are continuous functions with nice domains D,E ⊆ R and consider the
differential equation:

y′ + f(t)y = g(t)
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1. Define the integrating factor to be the function µ : D → R given by:

µ(t) := exp

(∫
f(t) dt

)
(here

∫
f(t) dt can be any antiderivative of f(t), the constant of integration does not matter). Then

we can multiply our original equation by µ to obtain:

µ(t)(y′ + f(t)y) = (µ(t)y)′ = µ(t)g(t)

2. The general solution of y′ + f(t)y = g(t) is then given by:

y(t) = y(t;C) =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)
Furthermore, suppose we are also given an initial condition y(t0) = y0, where t0 ∈ D ∩ E and y0 ∈ R.

3. Then the initial value problem has the unique solution:

y(t) =
1

µ(t)

(∫ t

t0

µ(s)g(s) ds+ y0

)

where µ(t) := exp
(∫ t

t0
f(s) ds

)
.

4. The interval of existence of this solution is the largest interval I ⊆ R such that:

(a) t0 ∈ I,

(b) I ⊆ D, and

(c) I ⊆ E.

Proof of Key Property of the Integrating Factor µ(t).

(µ(t)y)′ =
d

dt
(µ(t)y)

=
d

dt

(
exp

(∫
f(t) dt

)
· y

)
= exp

(∫
f(t) dt

)
· d

dt
(y) + y · d

dt

(
exp

(∫
f(t) dt

))
= µ(t)y′ + y · exp

(∫
f(t) dt

)
· f(t)

= µ(t)y′ + f(t) · exp
(∫

f(t) dt

)
· y

= µ(t)y′ + f(t)µ(t)y
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3 First Order Non-linear Differential Equations

Differential Form
A differential form is a formal expression of the form:

P (t, y) dt+Q(t, y) dy

where P,Q are functions of two variables and dt and dy are meaningless placeholders associated to the
variables t and y, called differentials. Differential forms can be added together in the natural way, and you
can multiply them (from the left) by arbitrary functions R(t, y).

Differential
Given a two-variable function F (t, y), the differential of F (notation: dF ) is the differential form:

dF :=
∂F

∂t
(t, y) dt+

∂F

∂y
(t, y) dy

Exact Differential Equation to Differential Form Equation
Exact differential equations are represented in the general form y′ = f(t, y), where f is a two-variable
function which might not be separable, i.e., it might not be of the form f(t, y) = g(t)h(y). To convert this
into a differential form equation, follow these steps:

1. Rewrite as dy
dt = f(t, y).

2. ”Multiply” both sides by dt, then add −f(t, y)dt to both sides to obtain:

−f(t, y)dt+ dy = 0.

3. Multiply both sides by a carefully chosen integrating factor µ(t, y):

−f(t, y)µ(t, y)dt+ µ(t, y)dy = 0.

This process results in a differential form equation: P (t, y)dt+Q(t, y)dy = 0, where P (t, y) = −f(t, y)µ(t, y)
and Q(t, y) = µ(t, y).

Potential Functions
A potential function for a differential form equation is a two-variable function F (t, y) such that

dF =
∂F

∂t
dt+

∂F

∂y
dy = P (t, y)dt+Q(t, y)dy,

i.e.,

1. ∂F
∂t = P (t, y), and

2. ∂F
∂y = Q(t, y).

In other words, a potential function is like an antiderivative of a differential form. Unfortunately, not every
differential form has a potential function.

Exact Differential Forms and Necessary Condition
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Suppose P,Q : D → R are continuous two-variable functions on a nice domain D ⊆ R2, and are also
continuously differentiable. A differential form

P dt+Qdy

is exact if there exists a continuously differentiable function F : D → R such that

dF = P dt+Qdy.

Closed
Suppose P,Q : D → R are continuously differentiable two-variable functions on a nice domain D ⊆ R2. We
say that the differential form

P dt+Qdy

is closed if
∂P

∂y
− ∂Q

∂t
= 0,

i.e., if the left-hand side is the constant zero function. This condition ensures that the changes in P with
respect to y and Q with respect to t balance each other out, indicating a kind of symmetry in the differential
form’s structure.

Converse of Exact =⇒ Closed
Suppose P,Q : I × J → R are continuously differentiable functions and I, J ⊆ R are intervals (so the
common domain of P and Q is a rectangle). Then the following are equivalent:

1. The differential form P dt+Qdy is exact.

2. The differential form P dt+Qdy is closed.

A differential form is closed if its coefficients satisfy the condition ∂Q
∂t = ∂P

∂y . This condition ensures that
local differentiability properties imply the existence of a potential function, making the form exact.

Finding a Potential Function of an Exact Differential Form Equation
The solution to the differential form equation P (t, y) dt+Q(t, y) dy = 0 is F (t, y) = C, where F is a potential
function of P (t, y) dt+Q(t, y) dy.

1. First solve ∂F
∂t = P by integrating with respect to t:

F (t, y) =

∫
P (t, y) dt+ ϕ(y)

where ϕ(y) acts as a constant but is a function of y.

2. Next, we need to find what ϕ(y) is. Since we know ∂F
∂y = Q(t, y), we differentiate our previous result

with respect to y:
∂

∂y

(∫
P (t, y) dt

)
+ ϕ′(y) = Q(t, y)

, and thus

ϕ(y) =

∫ (
Q(t, y)− ∂

∂y

∫
P (t, y) dt

)
dy

3. Put it all together in the following form:
F (t, y) = C
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Example:
(2t sin y + y3et) dt+ (t2 cos y + 3y2et) dy = 0.

∂

∂y
(2t sin y + y3et) = 2t cos y + 3y2et,

∂

∂t
(t2 cos y + 3y2et) = 2t cos y + 3y2et,

=⇒ Exact

F (t, y) =

∫
(2t sin y + y3et) dt+ ϕ(y) = t2 sin y + y3et + ϕ(y),

∂F

∂y
=

∂

∂y
(t2 sin y + y3et + ϕ(y)) = t2 cos y + 3y2et + ϕ′(y) = t2 cos y + 3y2et,

ϕ′(y) = 0,

ϕ(y) = C,

F (t, y) = t2 sin y + y3et + C,

t2 sin y + y3et + C = 0,

t2 sin y + y3et = C.

Integrating Factor to Make Differential Form Exact
Suppose P,Q : D → R are continuous on a nice domain D ⊆ R2. We say that a function µ : D → R is an
integrating factor for the differential form equation

P (t, y) dt+Q(t, y) dy = 0

if

(i) µ(t, y) ̸= 0 for every (t, y) ∈ D, and

(ii) µ(t, y)P (t, y) dt+ µ(t, y)Q(t, y) dy is exact.

Existence Theorem
Suppose f : I × J → R is a continuous two-variable function defined on a rectangle I × J in the ty-plane,
where I, J ⊆ R are intervals. Given any point (t0, y0) ∈ I × J , the initial value problem

1. y′ = f(t, y)

2. y(t0) = y0

has a solution y(t) defined on some interval I ′ ⊆ I that contains t0. Furthermore, the solution will be defined
at least until the solution curve t 7→ (t, y(t)) leaves the rectangle I × J .

Uniqueness Theorem
Suppose f : I × J → R is a continuous two-variable function defined on a rectangle I × J in the ty-plane,
and I, J ⊆ R are intervals. Additionally, suppose the partial derivative ∂f

∂y exists and is continuous on all of

I × J . Given (t0, y0) ∈ I × J , and assuming two solutions y(t) and ỹ(t) to the same initial value problem
(IVP):

1. y′(t) = f(t, y(t)) and ỹ′(t) = f(t, ỹ(t)) for every t,

2. y(t0) = y0 and ỹ(t0) = y0,
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then for every t such that (t, y(t)) and (t, ỹ(t)) remain within the rectangle I × J , it follows that y(t) = ỹ(t).
Practical Benefit: Given the conditions of this theorem, different solution curves cannot cross.
Here is an example of an application: Suppose ȳ is a solution to a differential equation and ỹ is a solution

as well that passes thru the origin. Then ỹ < 1 ∀t ∈ I

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1

1

2

x

y
ȳ := 1

ỹ

4 Autonomous Equations

Autonomous Equations
A first-order differential equation is called an autonomous equation if it can be written in the form:

y′ = f(y)

i.e., if the equation does not depend on the independent variable t.

Remarks:

1. The direction field does not change as you go from left to right, it only changes as you go from bottom
to top. This is because the function f(t, y) = f(y) is only a function of y and does not depend on t.

2. Suppose y0(t) is a particular solution and C ∈ R is a constant. Then y0(t+C) (a shift of y0 to the left
by C) is also a solution. Indeed:

(y0(t+ C))′ = y′0(t+ C) = f(y0(t+ C))

3. Suppose y0 ∈ R is such that f(y0) = 0. Then the constant function y(t) := y0 for all t is a solution
to y′ = f(y). Such a number y0 is called an equilibrium point and the constant function y(t) := y0 is
called an equilibrium solution.

Phase Line
A phase line for the equation y′ = f(y) is a plot of the y-axis (displayed horizontally) with the following
features:

1. At every equilibrium point y0 (i.e., where f(y0) = 0), there is a dot.
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2. In a region between two equilibrium points (or between an equilibrium point and ±∞), if f(y) < 0
in that region, then there is an arrow to the left. This tells us that for these y-values, the solution is
strictly decreasing.

3. In a region where f(y) > 0, then there is an arrow to the right. This tells us that for these y-values,
the solution is strictly increasing.

4. At each equilibrium point y0, if the two arrows on either side of y0 are both pointing towards y0, then
the dot at y0 is filled in. Otherwise, the dot is not filled in.

Often the phase line is plotted with a vertical f(y)-axis as well, superimposed with a graph of the function
f(y).

Stability
Consider the autonomous equation y′ = f(y). Suppose y0 ∈ R is an equilibrium point (i.e., f(y0) = 0). We
say that y0 is

1. asymptotically stable if a solution which goes through a point (t0, y0 + ϵ), where |ϵ| ≪ 1 is very tiny,
will asymptotically approach the solution y(t) = y0. These correspond to the filled-in dots on the phase
line.

2. unstable if it is not asymptotically stable, i.e., if there is some solution which goes through a point
(t0, y0 + ϵ) which ”peels off” and is not asymptotic to the solution y(t) = y0. These correspond to the
non-filled-in dots on the phase line.

In other words, asymptotically stable equilibrium points act like ”sinks”, bringing nearby solution curves
towards the constant solution at that point. Unstable equilibrium points, at least on one of the two sides,
will ”repel” nearby solution curves.

⇒ First Derivative Test for Stability

(1) if f ′(y0) < 0, then f is strictly decreasing at y0 and y0 is asymptotically stable,

(2) if f ′(y0) > 0, then f is strictly increasing at y0 and y0 is unstable,

(3) if f ′(y0) = 0, then no conclusion can be drawn and further investigation is needed.

Note:

1. By studying the function f(y), first construct the phase line, including classifying the equilibrium
points as either asymptotically stable or unstable,

2. In the direction field, plot the equilibrium solutions.

3. In the other regions, plot solution curves that behave according to the phase line: if the phase line points
to the left, the solution should be strictly decreasing and asymptotic to the next lower equilibrium
solution (or diverge to −∞). If the phase line points to the right, the solution should be strictly
increasing and asymptotic to the next higher equilibrium solution (or diverge to +∞).

Basically, filled in dot =⇒ stable, empty dot =⇒ unstable.
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5 Second-Order Linear Differential Equations

Second-Order Linear Differential Equation
A second-order linear differential equation is a differential equation which can be put in the form:

y′′(t) + p(t)y′ + q(t)y = g(t)

where the coefficient functions p, q, and g are functions of the independent variable t only. The function g(t)
is referred to as the forcing term. If g(t) = 0 is the constant zero function, then the differential equation

y′′ + p(t)y′ + q(t)y = 0

is said to be homogeneous.

Second Order Linear Existence and Uniqueness Theorem
Suppose p, q, g : I → R are continuous functions with domain I ⊆ R being an interval. Then, given t0 ∈ I
and any two real numbers y0, y1 ∈ R, there is a unique function y : I → R which satisfies the initial value
problem:

(i) y′′ + p(t)y′ + q(t)y = g(t)

(ii) y(t0) = y0 and y′(t0) = y1.

For homogeneous linear equations, given two solutions, we can mass-produce many more solutions.

Solution to Homogeneous Second Order Linear Differential Equations
Suppose y1, y2 are linearly independent solutions to the homogeneous second-order linear equation

y′′ + p(t)y′ + q(t)y = 0

Then the general solution is:
y(t;C1, C2) = C1y1(t) + C2y2(t)

The pair, {y1, y2} is called a fundamental set of solutions to the homogeneous second-order linear
equation.

Proof. Let C1, C2 ∈ R be arbitrary. Note that

(C1y1 + C2y2)
′′ + p(t)(C1y1 + C2y2)

′ + q(t)(C1y1 + C2y2)

= (C1y
′′
1 + C2y

′′
2 ) + p(t)(C1y

′
1 + C2y

′
2) + q(t)(C1y1 + C2y2) (because the derivative is linear)

= C1(y
′′
1 + p(t)y′1 + q(t)y1) + C2(y

′′
2 + p(t)y′2 + q(t)y2)

= C1 · 0 + C2 · 0
= 0,

because y1 and y2 are both solutions. Thus, C1y1 + C2y2 is also a solution.
Note: This math works for the first-order homogeous linear differential equation as well. However, it

would be impossible to find two linearly independent solutions. We are essentially finding the basis of our
solution space and thus will only find n basis vectors in an nth-order differential equation. In linear algebra
terms, a “fundamental set of solutions” is a basis of the subspace of all solutions.

Linearly Independent Functions
Suppose y1, y2 : I → R are functions defined on an interval I ⊆ R. We say that y1 and y2 are linearly
independent if, for every C1, C2 ∈ R, if

C1y1(t) + C2y2(t) = 0 for every t ∈ I,

then C1 = C2 = 0. In other words, y1 and y2 are linearly independent if the only way for a linear combination
of y1 and y2 to be the constant zero function is with the trivial linear combination 0y1 + 0y2. If y1 and y2
are not linearly independent, then we say they are linearly dependent.
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For two functions y1 and y2 to be linearly dependent, this means that either y1 is a constant multiple of
y2 (i.e., y1 = Cy2 for some C ∈ R) or y2 is a constant multiple of y1 (y2 = Cy1 for some C ∈ R).

Wronskian
Suppose u, v : I → R are two differentiable functions defined on an interval I ⊆ R. Define the Wronskian of
u and v to be the function W : I → R defined by

W (t) := det

[
u(t) v(t)
u′(t) v′(t)

]
:= u(t)v′(t)− v(t)u′(t)

for all t ∈ I.

Wronskian Dichotomy I
Suppose p, q, u, v : I → R are functions defined on an interval I ⊆ R such that u and v are solutions to the
homogeneous second-order linear differential equation

y′′ + p(t)y′ + q(t)y = 0.

Let W (t) be the Wronskian of u and v. Then exactly one of the following two things is true:

(Case 1) W (t) = 0 for all t ∈ I, or

(Case 2) W (t) ̸= 0 for all t ∈ I.

Proof. We are assuming that both u and v satisfy:

u′′ + pu′ + qu = 0 and v′′ + pv′ + qv = 0.

We wish to show that W = uv′−vu′ is either everywhere zero or everywhere nonzero. First, differentiate
W :

W ′ = uv′′ + u′v′ − vu′′ − v′u′ = uv′′ − vu′′ = u(−pv′ − qv)− v(−pu′ − qu)

because u, v are solutions, leading to

W ′ = −puv′ − quv + pvu′ + quv = −p(uv′ − vu′) = −pW.

Thus, the function W (t) is a solution to the first-order linear homogeneous equation W ′ + pW = 0. Pick
t0 in the domain of W , and suppose W (t0) = W0. Then by the existence and uniqueness theorem, we have
that

W (t) = W0 exp

(
−
∫ t

t0

p(s) ds

)
.

Thus, if W0 = 0, we are in Case 1. Otherwise, if W0 ̸= 0, we are in Case 2, since the exponential function is
never zero.

Wronskian Dichotomy II
Let p, q, u, v : I → R be functions defined on an interval I ⊆ R, with u and v as solutions to the homogeneous
second-order linear differential equation y′′ + p(t)y′ + q(t)y = 0. Define W (t), the Wronskian of u and v, as
follows. Then, the relationship between W (t) and the linear (in)dependence of u and v is characterized by
two cases:

1. If there exists some t0 ∈ I for which W (t0) = 0, implying that W (t) = 0 for all t ∈ I, then u and v are
linearly dependent.

2. Conversely, if there exists some t0 ∈ I for which W (t0) ̸= 0, implying that W (t) ̸= 0 for all t ∈ I, then
u and v are linearly independent.
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6 Homogeneous Second Order Linear Differential Equations with
Constant Coefficients

Characteristic Polynomial
The characteristic polynomial associated with the homogeneous second-order linear equation

y′′ + py′ + qy = 0

(where p, q ∈ R are constant functions) is the quadratic polynomial

f(λ) = λ2 + pλ+ q

in the variable λ. A root of the characteristic polynomial is called a characteristic root.

Solutions to Homogeneous Second Order Linear Differential Equations with Constant Coefficients
We have three cases using the roots of our characteristic polynomial associated with the differential equation
y′′ + py′ + qy = 0:

Case I: Distinct real roots. The general solution to y′′ + py′ + qy = 0 when λ1 ̸= λ2 are distinct and real
is:

y(t;C1, C2) = C1e
λ1t + C2e

λ2t

Case II: Repeated real roots. The general solution to y′′ + py′ + qy = 0 when λ1 = λ2 are not distinct
(and real) is:

y(t;C1, C2) = C1e
λ1t + C2te

λ1t

Case III: Distinct complex roots, complex version. The general solution to y′′ + py′ + qy = 0 when λ1 =
a+ bi, λ2 = a− bi are distinct and complex is:

y(t;C1, C2) = C1e
(a+bi)t + C2e

(a−bi)t = C1e
λ1t + C2e

λ2t

Case III: Distinct complex roots, real version. The general solution to y′′+py′+qy = 0 when λ1 = a+bi,
λ2 = a− bi are distinct and complex is:

y(t;C1, C2) = C1e
at cos(bt) + C2e

at sin(bt)

Properties of Complex Numbers
Recall the following properties about complex numbers:

1. A complex number is a number of the form z = a + bi, where a, b ∈ R and i2 = −1 is the imaginary
unit. We denote the set of all complex numbers by C.

2. Given a complex number z = a+ bi, we define its real part to be Re(z) := a and its imaginary part to
be Im(z) := b.

3. Given a complex number z = a+ bi, we define its complex conjugate to be z̄ := a− bi.

4. Here are some facts about the complex conjugate of a complex number z = a+ bi:
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(a) ¯̄z = z

(b) Re(z) = (z + z̄)/2

(c) Im(z) = (z − z̄)/(2i)

(d) z = z̄ iff z ∈ R iff b = 0.

(e) For w ∈ C we have ¯z + w = z̄ + w̄ and z̄w = z̄ · w̄

5. The complex exponential function behaves according to Euler’s formula:

ea+bi = ea(cos b+ i sin b)

6. Suppose f(λ) = λ2 + pλ + q is a polynomial with real coefficients p, q ∈ R and a complex (non-real)
root λ1 = a + bi. Then λ2 := λ̄1 = a − bi is also a complex root, i.e., the complex roots of a real
polynomial occur in complex conjugate pairs.

7. Suppose z(t) is a complex-valued function such that z(t) = x(t)+y(t)i, where x(t), y(t) are real-valued
functions. Then

d

dt
z(t) =

d

dt
x(t) + i

d

dt
y(t)

i.e., complex-valued functions can be differentiated by separately differentiating the real and imaginary
parts in the usual way.

7 Non-homogeneous Second-Order Differential Equations

General Solutions to Inhomogeneous Differential Equations
Suppose yp(t) is a particular solution to the inhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t) (A)

and that y1(t), y2(t) form a fundamental set of solutions to the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0 (B).

Then the general solution to the inhomogeneous equation (A) is given by

y(t) = y(t;C1, C2) = C1y1(t) + C2y2(t) + yp(t).

Method of Undetermined Coefficients
Suppose y′′ + py′ + qy = g(t) is an inhomogeneous differential equation such that:

(a) p, q ∈ R are constants, and

(b) g(t) is not a solution to the homogeneous solution y′′ + py′ + qy = 0.

Then the following gives the trial solution you should guess depending on the form of the forcing function
g(t) (where A,B, a, b, r, ω ∈ R, P (t) is a polynomial and p0(t), p1(t) are polynomials of the same degree as
P ). If the forcing function g(t) is of the form:

1. ert, then the trial solution is yp(t) = aert.

2. A cosωt+B sinωt, then the trial solution is yp(t) = a cosωt+ b sinωt.

3. P (t), then the trial solution is yp(t) = p0(t).

4. P (t) cosωt or P (t) sinωt, then the trial solution is yp(t) = p0(t) cosωt+ p1(t) sinωt.
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5. ert cosωt or ert sinωt, then the trial solution is yp(t) = ert(a cosωt+ b sinωt).

6. ertP (t) cosωt or ertP (t) sinωt, then the trial solution is yp(t) = ert(p0(t) cosωt+ p1(t) sinωt).

If g(t) is a solution to y′′ + py′ + qy, then use the trial solution typ(t), and if that does not work, then use
the trial solution t2yp(t).

Example:
Find a particular solution to:

y′′ + 3y′ + 2y = 4e−3t.

Solution. Here the forcing term is g(t) = 4e−3t. We will guess that there is a particular solution of the form
yp(t) = ae−3t, where a ∈ R is an undetermined coefficient. Thus in this case our “trial solution” is a function
yp(t) = ae−3t. To find a, we plug the trial solution yp(t) into the equation:

y′′p + 3y′p + 2yp = 9ae−3t − 9ae−3t + 2ae−3t = 4e−3t.

This simplifies to
(9a− 9a+ 2a)e−3t = 2ae−3t = 4e−3t

and so 2a = 4, i.e., a = 2. Thus the function yp(t) = 2e−3t is a particular solution to y′′ + 3y′ + 2y = 4e−3t.
Variation of Parameters
Suppose y1(t) and y2(t) form a fundamental set of solutions to the homogeneous differential equation:

y′′ + p(t)y′ + q(t)y = 0,

where, in particular, the Wronskian W (t) := y1y
′
2 − y2y

′
1 ̸= 0 for all t. Then, the inhomogeneous differential

equation:
y′′ + p(t)y′ + q(t)y = g(t)

has the following as a particular solution:

yp(t) = y1(t)

∫ −y2(t)g(t)

W (t)
dt+ y2(t)

∫
y1(t)g(t)

W (t)
dt.

Example of Variation of Parameters
Find a particular solution to the inhomogeneous equation

y′′ + y = tan t

on the interval (−π
2 ,

π
2 ).

Solution: First, we find a fundamental set of solutions to y′′ + y = 0. The characteristic polynomial is
f(λ) = λ2+1 = (λ− i)(λ+ i), yielding λ1, λ2 = ±i. Therefore, a fundamental set of solutions is y1(t) = cos t,
y2(t) = sin t. Next, we compute the Wronskian:

W (t) = cos2 t+ sin2 t = 1.

To find v1(t), we use:

v1(t) =

∫ −y2(t)g(t)

W (t)
dt

=

∫
− sin t tan t dt

= −
∫

sin2 t

cos t
dt

= −
∫

1− cos2 t

cos t
dt
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= sin t− ln | sec t+ tan t|
= sin t− ln(sec t+ tan t),

since sec t+ tan t ≥ 0 on the interval (−π
2 ,

π
2 ). For v2(t), we find:

v2(t) =

∫
y1(t)g(t)

W (t)
dt

=

∫
cos t tan t dt

=

∫
sin t

= − cos t.

Thus, a particular solution is:

yp(t) = y1v1 + y2v2 = cos t(sin t− ln(sec t+ tan t)) + sin t(− cos t) = − cos t ln(sec t+ tan t).

8 Back to Linear Algebra

Matrix Vector Space Properties
Suppose m,n ≥ 1, A,B,C ∈ Mm×n(R), and α, β ∈ R. Then the following facts about matrix addition and
scalar multiplication hold:

1. (A+B) + C = A+ (B + C) (associativity of addition)

2. 0m×n +A = A+ 0m×n = A (additive identity)

3. A+ (−1)A = 0m×n (additive inverse)

4. A+B = B +A (commutativity of addition)

5. α(A+B) = αA+ αB (right distributivity)

6. (α+ β)A = αA+ βA (left distributivity)

7. (αβ)A = α(βA) (associativity of scalar multiplication)

8. 1 ·A = A (here 1 ∈ R is a scalar)

Homogeneous Matrix Equations
Suppose A ∈ Mm×n(R) and consider the matrix equation

Ax = b

where b ∈ Rm. We say that the equation is homogeneous if b = 0m×1 is the zero vector in Rm. Otherwise,
if b ̸= 0, then we say that the equation is inhomogeneous.

Nullspace
Suppose A ∈ Mm×n(R). We define the nullspace of A to be the following subset of Rn:

null(A) := {x ∈ Rn : Ax = 0} ⊆ Rn

In other words, the nullspace null(A) of the matrix A is the set of all solutions to the homogeneous equation
Ax = 0. The nullspace is a subspace of the
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Finding Nullspace Example
Find the nullspace of the following matrix:

A =

[
1 1 0 4
0 0 1 2

]
Proof. We need to find the set of all vectors x ∈ R4 such that Ax = 0. This means the same thing as

finding all solutions to the system of equations:

x1 + x2 + 4x4 = 0

x3 + 2x4 = 0.

To do this, we set up the system as an augmented matrix and take it to RREF:[
1 1 0 4 0
0 0 1 2 0

]
Here we see that the augmented matrix is already in RREF, so we can read off the solutions. We see that
x2, x4 are free variables, so the general solution is:

x1 = −x2 − 4x4

x2 = x2

x3 = −2x4

x4 = x4

Which we can write in parametric form as a set of linear combinations of R4-vectors:

null(A) =

x2


−1
1
0
0

+ x4


−4
0
−2
1

 : x2, x4 ∈ R


Basis of the Nullspace
Suppose A ∈ Mm×n(R). A basis of null(A) is a collection of vectors x1, . . . ,xk ∈ Rn such that:

1. null(A) = span(x1, . . . ,xk) (so x1, . . . ,xk can make all of null(A) by linear combinations), and

2. x1, . . . ,xk are linearly independent (so none of the vectors x1, . . . ,xk are unnecessary or redundant).

We define the dimension of null(A) to be the number of vectors in a basis of null(A). Thus

dim null(A) := k ⇔ there is a basis x1, . . . ,xk of null(A) with k vectors.

Notes Relating to the Rank-Nullity Theorem
Suppose A ∈ Mm×n(R):

1. In general, null(A) will have infinitely many possible bases, but all of these bases have the same size.
Thus, the definition of dim null(A) does not depend on a particular choice of basis.

2. Recall that the rank of A (denoted rank(A)) is the number of pivots in the RREF of A. In general,
dim null(A) is equal to the number of free variables in the RREF of A. Since the number of pivot
variables plus the number of free variables, this yields the important rank-nullity formula:

rank(A) + dim null(A) = n = # of columns of A.
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3. A basis for null(A) can be obtained by solving the homogeneous equation Ac = 0m×1 in the usual
way with Gaussian Elimination, writing the solutions in parametric form with the free variables as
parameters, then collecting each vector which gets multiplied by a free variable. This (finite) collection
of vectors will be a basis for null(A).

Facts on Number of Solutions to a Linear System
Suppose A ∈ Mm×n(R) and b ∈ Rm.

1. The following are equivalent:

(a) there does not exist any solutions to Ax = b,

(b) the system corresponding to Ax = b is inconsistent,

(c) there does not exist a particular solution xp to Ax = b.

We define the matrix equation Ax = b to be inconsistent if any of the equivalent conditions of (1)
above. We say that Ax = b is consistent otherwise.

2. Suppose Ax = b is consistent. The following are equivalent:

(a) there is a unique solution to Ax = b,

(b) there is a unique solution to the system corresponding to Ax = b,

(c) null(A) = {0n×1},
(d) dim null(A) = 0,

(e) there are no free variables,

(f) every variable is a pivot variable,

(g) rank(A) = n.

3. Suppose Ax = b is consistent. The following are equivalent:

(a) there are infinitely many solutions to Ax = b,

(b) there are infinitely many solutions to the system corresponding to Ax = b,

(c) null(A) ̸= {0n×1},
(d) dim null(A) ≥ 1,

(e) there is at least one free variable,

(f) rank(A) < n.

Determinant Properties
Suppose A ∈ Mn×n(R). Then the following are equivalent:

1. det(A) ̸= 0

2. null(A) = {0}

Suppose A,B ∈ Mn×n(R) and α ∈ R. Then:

1. det(In×n) = 1

2. det(αA) = αn det(A)

3. If B is obtained from A by either switching two rows or switching two columns (but not both), then
det(B) = − det(A).
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Eigenvalues and Eigenvectors
Suppose A ∈ Mn×n(R) is a square matrix and λ ∈ R. We say that λ is an eigenvalue for A if there exists a
nonzero vector v ∈ Rn such that

Av = λv.

If λ is an eigenvalue of A, then we call a nonzero vector v ∈ Rn which satisfies

Av = λv

an eigenvector of A associated to λ.

Eigenvalue Theorem
Suppose A ∈ Mn×n(R) and λ ∈ R. Then the following are equivalent:

1. λ is an eigenvalue of A,

2. det(A− λI) = 0.

In other words, the eigenvalues of A are zeros of the “function” det(A− λI). As it turns out, the expression
det(A−λI) is always a polynomial in the variable λ. This polynomial has a special name, the characteristic
polynomial.

This result follows from the equivalences below:

λ is an eigenvalue of A ⇔ there exists nonzero v ∈ Rn such that Av = λv

⇔ there exists nonzero v ∈ Rn such that Av − λv = 0

⇔ there exists nonzero v ∈ Rn such that Av − λIv = 0

⇔ there exists nonzero v ∈ Rn such that (A− λI)v = 0

⇔ null(A− λI) ̸= {0}
⇔ det(A− λI) = 0, by the Determinant Property above.

Characteristic Polynomial
Suppose A ∈ Mn×n(R). The polynomial

p(λ) := (−1)n det(A− λI) = det(λI −A)

is called the characteristic polynomial of A, and the equation

p(λ) = 0

is called the characteristic equation.
Note: the factor (−1)n ensures that the polynomial is monic, i.e. has a positive leading coefficient =⇒ 1

Thus, the Eigenvalue Theorem states that the eigenvalues of A are precisely the zeros of its characteristic
polynomial.

Eigenspace
Suppose A ∈ Mn×n(R) and λ is an eigenvalue of A. We define the eigenspace of λ to be

Eλ := null(A− λI),

i.e., the eigenspace Eλ is the set of all eigenvectors associated to λ together with the zero vector.

Example Finding the Eigenspace
Find all eigenvectors of the matrix

A =

4 0 −2
1 1 2
0 0 2

 .
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Solution. We found three distinct eigenvalues: λ1 = 1, λ2 = 2, and λ3 = 4. For each of these eigenvalues,
we need to compute a basis of its eigenspace.

λ1 = 1: We will compute a basis of

null(A− I) = null

3 0 −2
1 0 2
0 0 1

 .

Note that 3 0 −2 0
1 0 2 0
0 0 1 0

 RREF−−−−→

1 0 0 0
0 0 1 0
0 0 0 0

 .

We see that x2 is a free variable and thus the general solution is:

x1 = 0, x2 = x2, x3 = 0.

Thus we can express the eigenspace E1 as

E1 = null(A− I) = span


01
0

 .

λ2 = 2: We compute a basis of null(A− 2I):2 0 −2 0
1 −1 2 0
0 0 0 0

 RREF−−−−→

1 0 −1 0
0 1 −3 0
0 0 0 0

 .

We see that x3 is a free variable and the general solution is

x1 = x3, x2 = 3x3, x3 = x3.

Thus we can express the eigenspace E2 as

E2 = null(A− 2I) = span


13
1

 .

λ3 = 4: We compute a basis of null(A− 4I):0 0 −2 0
1 −3 2 0
0 0 −2 0

 RREF−−−−→

1 −3 0 0
0 0 1 0
0 0 0 0

 .

We see that x2 is a free variable and the general solution is

x1 = 3x2, x2 = x2, x3 = 0.

Thus we can express the eigenspace E4 as

E4 = null(A− 4I) = span


31
0

 .

Facts on Eigenbases
Suppose A ∈ Mn×n(R) is a square matrix. An eigenbasis of A is a basis of Rn which is composed of
eigenvectors of A. In other words, a set of vectors v1, . . . ,vn ∈ Rn is an eigenbasis of A if
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1. Avi = λivi for some λi, for each i = 1, . . . , n.

2. Rn = span(v1, . . . ,vn)

3. v1, . . . ,vn are linearly independent.

Here is a fact about eigenbases which we are happy to assume: Suppose A ∈ Mn×n(R) has distinct
eigenvalues λ1, . . . , λk, for some k ≤ n. If

1. βi is a basis of Eλi for each i = 1, . . . , k and

2. |β1|+ |β2|+ · · ·+ |βk| = n,

then β := β1 ∪ β2 ∪ · · · ∪ βk is an eigenbasis of A. In particular, if k = n, then β = β1 ∪ · · · ∪ βn is always an
eigenbasis (i.e., condition (2) is automatically satisfied).

9 Linear Systems

Homogeneous Linear System of Differential Equations
A homogeneous linear system of differential equations (with constant coefficients) is a set of differential
equations of the following form:

x′
1(t) = a11x1(t) + · · ·+ a1nxn(t)

x′
2(t) = a21x1(t) + · · ·+ a2nxn(t)

...

x′
n(t) = an1x1(t) + · · ·+ annxn(t)

where each aij ∈ R and x1(t), . . . , xn(t) are unknown functions. A solution to the system is a collection
of n differentiable functions x1, x2, . . . , xn : I → R (where I ⊆ R is an interval) such that plugging these
functions into the system makes each equation true.

We will prefer to write systems in terms of matrices and vectors, so we can rewrite the system above as:
x′
1(t)

x′
2(t)
...

x′
n(t)

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1(t)
x2(t)
...

xn(t)


or even as:

x′ = Ax

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


and

x =


x1(t)
x2(t)
...

xn(t)

 .

Note that with this notation, a solution is now a vector-valued function x(t) : R → Rn.

Linear Independence of Vector-Valued Functions
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Suppose x1(t),x2(t), . . . ,xk(t) : I → Rn are vector-valued functions. We say that x1(t),x2(t), . . . ,xk(t)
are linearly independent if for every c1, . . . , ck ∈ R, if

c1x1(t) + · · ·+ ckxk(t) = 0 for all t ∈ I,

then c1 = c2 = · · · = ck = 0. Otherwise, we say that x1(t),x2(t), . . . ,xk(t) are linearly dependent.
Fact: Suppose x1(t),x2(t), . . . ,xk(t) are solutions to x′ = Ax. If there is some fixed t0 such that the

column vectors x1(t0), . . . ,xk(t0) ∈ Rn are linearly dependent (respectively, linearly independent), then the
functions x1(t),x2(t), . . . ,xk(t) are linearly dependent (resp., linearly independent). This means just check
a point.

Fundamental Set of Solutions for Linear System
Suppose A ∈ Mn×n(R) and x1(t), . . . ,xn(t) are n linearly independent solutions to

x′ = Ax.

Then x1(t), . . . ,xn(t) form a fundamental set of solutions, i.e., if x0(t) is an arbitrary solution, then there
are (necessarily unique) c1, . . . , cn ∈ R such that

x0(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) for every t.

Finding a Solution to Linear System
Suppose A ∈ Mn×n(R), λ is an eigenvalue of A, and v is an eigenvector associated to λ. Then

x(t) := eλtv

is a solution to the system x′ = Ax and satisfies the initial condition x(0) = v.
Proof: Let x(t) = eλtv be as in the statement of the proposition. Note that the lefthand side yields:

x′(t) = (eλtv)′ = (λeλt)v = λeλtv = λx(t).

Whereas the righthand side yields:

Ax(t) = A(eλtv) = eλtAv = eλtλv = λx(t).

Planar System

We will consider the case where A ∈ M2×2(R)

Planar System with Distinct Real Roots
Suppose A ∈ M2×2(R) has two distinct real eigenvalues λ1 ̸= λ2 ∈ R. Furthermore, suppose v1 is an
eigenvector associated with λ1 and v2 is an eigenvector associated with λ2. Then the general solution to

x′ = Ax

is
x(t;C1, C2) = C1e

λ1tv1 + C2e
λ2tv2.

Complex Roots Case
Suppose A ∈ M2×2(R) has complex conjugate eigenvalues λ, λ /∈ R, and w is an eigenvector associated to
λ. Then w is also associated with λ. Furthermore:

1) (Complex version) The general solution to x′ = Ax in terms of complex-valued functions is:

x(t;C1, C2) = C1e
λtw + C2e

λtw
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2) (Real version) The general solution to x′ = Ax in terms of real-valued functions is:

x(t;C1, C2) = C1e
αt(cos(βt)v1 − sin(βt)v2) + C2e

αt(sin(βt)v1 + cos(βt)v2)

where λ = α+ iβ and w = v1 + iv2.

Double Real Root Case Easy Version
Suppose A ∈ M2×2(R) has only one eigenvalue λ ∈ R (of multiplicity two). Furthermore, suppose we can
find two linearly independent eigenvectors of A associated to λ. Then the general solution to x′ = Ax is

x(t;C1, C2) = C1e
λt

[
1
0

]
+ C2e

λt

[
0
1

]
=

[
C1e

λt

C2e
λt

]
.

Proof. Let

x1(t) := eλt
[
1
0

]
, x2(t) := eλt

[
0
1

]
.

By assumption, the eigenspace of λ is two-dimensional, so it must be all of R2, Thus the following two vectors
are eigenvectors associated to λ:

e1 =

[
1
0

]
, e2 =

[
0
1

]
.

Both x1(t) and x2(t) are solutions to x′ = Ax. Furthermore, since x1(0), x2(0) are linearly independent,
it follows that x1(t), x2(t) are also linearly independent. Thus by our earlier theorem, it follows that the
general solution is

x(t;C1, C2) = C1x1(t) + C2x2(t) = C1e
λt

[
1
0

]
+ C2e

λt

[
0
1

]
=

[
C1e

λt

C2e
λt

]
.

Note: this occurs when our matrix is in the following form where λ ∈ R:[
λ 0
0 λ

]
It can be thought of as two distinct first order linear homogeneous differential equations with simple

solutions that we have worked with earlier.

Double Real Root Interesting Case
Suppose A ∈ M2×2(R) has only one eigenvalue λ ∈ R (of multiplicity two). Furthermore, suppose we can
only find one linearly independent eigenvector v1 of A associated to λ. Then the general solution to x′ = Ax
is

x(t;C1, C2) = C1e
λtv1 + C2e

λt(v2 + tv1)

where v2 ∈ R2 is any particular solution to the matrix equation (A− λI)v2 = v1.

Reasoning. Given the single linearly independent eigenvector v1, we look for a general solution that
incorporates the eigenvector and accounts for the lack of a second independent eigenvector by introducing
v2, which satisfies the matrix equation (A−λI)v2 = v1. The term C2e

λttv1 compensates for the dimensional
shortfall of the eigenspace associated with λ, ensuring the solution space is fully spanned. This construction
leverages the Jordan chain concept, where v2 can be considered a generalized eigenvector. The resulting
expression for x(t;C1, C2) thereby satisfies the differential system x′ = Ax for any initial conditions encap-
sulated by C1 and C2.

Double Real Root Interesting Case Example
Find the general solution to x′ = Ax, where

A =

[
1 1
0 1

]
.
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Solution. The characteristic polynomial is

p(λ) = det

([
1− λ 1
0 1− λ

])
= (1− λ)2.

Thus, λ1 = 1 is the only eigenvalue (of multiplicity two). For null(A− I), we find that[
0 1
0 0

]
is already in RREF, indicating only one linearly independent eigenvector:

v1 =

[
1
0

]
.

Given v1, a solution to x′ = Ax is

x1(t) = et
[
1
0

]
.

For the second solution, we consider the form

x(t) = eλ1t(v2 + tv1)

and find v2 satisfying
(A− λ1I)v2 = v1.

Solving gives v2 =

[
0
1

]
, leading to

x2(t) = et
([

0
1

]
+ t

[
1
0

])
= et

[
t
1

]
.

The general solution is

x(t;C1, C2) = C1x1(t) + C2x2(t) = C1e
t

[
1
0

]
+ C2e

t

[
t
1

]
=

[
C1e

t + C2te
t

C2e
t

]
.

9.1 Higher Order Differential Equations

Homogeneous nth Order Linear Differential Equations
A homogeneous nth order linear differential equation with constant coefficients is given by:

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

where a1, . . . , an ∈ R.
The solution to these equations involves a three-step process:

1. Convert the nth order linear system (in one unknown function) to an n × n linear system (with n
unknown functions).

2. Solve the nth order linear system.

3. Convert the solution back in terms of a solution of the original linear differential equation.
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Theorems on Homogeneous Higher Order Linear Systems
Consider the nth order homogeneous linear differential equation with constant coefficients:

(A) y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R.

and let
(B) x′ = Ax

be the associated linear system.
(1) The following are equivalent:

(a) y(t) is a solution to (A)

(b) the vector-valued function x(t) =


y(t)
y′(t)
y′′(t)
...

y(n−1)(t)

 is a solution to (B).

(2) Suppose y1(t), . . . , yn(t) are solutions to (A). The following are equivalent:

(a) y1(t), . . . , yn(t) are linearly independent (as real-valued functions)

(b) The vector-valued functions


y1(t)
y′1(t)
...

y
(n−1)
1 (t)

 , . . . ,


yn(t)
y′n(t)
...

y
(n−1)
n (t)

 are linearly independent.

(c) For some t0 the determinant det

 y1(t0) · · · yn(t0)
...

. . .
...

y
(n−1)
1 (t0) · · · y

(n−1)
n (t0)

 ̸= 0.

(d) For every t, the determinant det

 y1(t) · · · yn(t)
...

. . .
...

y
(n−1)
1 (t) · · · y

(n−1)
n (t)

 ̸= 0.

Wronskian for Higher Order Differential Equations
Let y1, . . . , yn : I → R be real-valued functions (where I ⊆ R is an interval). The Wronskian of y1, . . . , yn
is defined to be the function

W (t) = det


y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
...

. . .
...

y
(n−1)
1 (t) · · · y

(n−1)
n (t)

 .

Example Solving Higher Order Linear Differential Equation
Find the general solution to:

y(4) − 13y′′ + 36y = 0.

Solution. This equation involves one unknown function. First, we convert this into an equation with four
unknown functions by introducing three auxiliary variables. Defining x2(t) := y′(t), x3(t) := y′′(t) = x′

2(t),
and x4(t) := y′′′(t) = x′

3(t), and for uniform notation, x1(t) := y(t), we get:

x′
1(t) = x2(t),

24



x′
2(t) = x3(t),

x′
3(t) = x4(t),

x′
4(t) = 13x3(t)− 36x1(t).

This leads to the system:

x′(t) =


0 1 0 0
0 0 1 0
0 0 0 1

−36 0 13 0

x(t).

To solve, we first compute the characteristic polynomial:

p(λ) = det(A− λI) = λ4 − 13λ2 + 36 = (λ− 2)(λ+ 2)(λ− 3)(λ+ 3).

The eigenvalues are λ1 = 2, λ2 = −2, λ3 = 3, λ4 = −3. The corresponding eigenvectors (calculation omitted)
are:

v1 =


1
2
4
8

 ,v2 =


−1
2
−4
8

 ,v3 =


1
3
9
27

 ,v4 =


−1
3
−9
27

 .

Thus, the general solution to x′ = Ax is:

x(t;C1, C2, C3, C4) = C1e
2tv1 + C2e

−2tv2 + C3e
3tv3 + C4e

−3tv4.

In particular, the general solution to y(4) − 13y′′ + 36y = 0 is:

y(t) = C1e
2t + C2e

−2t + C3e
3t + C4e

−3t.

General Strategy & The Companion Matrix
In general, for an nth order homogeneous linear differential equation with constant coefficients:

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R,

we introduce n − 1 additional unknown functions for the higher derivatives of y: x1(t) := y(t), x2(t) :=
x′
1(t) = y′(t), x3(t) := x′

2(t) = y′′(t), . . . , xn(t) := x′
n−1(t) = y(n−1)(t). This leads to the system:

x′
1(t) = x2(t),

x′
2(t) = x3(t),

...

x′
n−1(t) = xn(t).

The relation x′
n(t) = y(n)(t) can be connected to the lower derivatives using the original differential equation:

x′
n(t) = −anx1(t)− an−1x2(t)− · · · − a1xn(t).

Formulating the linear system:

x′(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

x(t).

Here, the matrix A is known as the companion matrix of the linear differential equation, giving us an
n× n linear system of the form x′ = Ax.

25


