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Upper and Lower Darboux Sums → Integral

Bounded Subset
A subset D ⊂ Rn is bounded if there exists some r > 0 such that D ⊂ Br(0).

Bounded Function
A function f : A ⊂ Rn → R is bounded if its image {f(x) | x ∈ A} is a bounded subset of R.

Boundary Point
A point x ∈ Rn is a boundary point of D ⊂ Rn if: for all ε > 0,

1. Bε(x) ∩D is non-empty, and

2. Bε(x) ∩Dc is non-empty.

Closure
The closure of a set D ⊂ Rn is the union of D and the boundary of D. That is, the closure is the set

D = {x ∈ Rn | Br(x) ∩D ̸= ∅ for all r > 0}

Support of a Function
The support of a function f : A ⊂ Rn → R is the closure of the set of non-zero values of a function:

supp(f) := {x ∈ A | f(x) ̸= 0}

Bounded Support
A function has bounded support if its support is bounded. Equivalently, there exists R > 0 such that
f(x) = 0 for all ∥x∥ > R.

Partition
A partition of a set X is a collection of non-empty subsets Xα ⊂ X such that every element of x ∈ X is in
exactly one Xα.

Dyadic Cubes
Given a vector k = ⟨k1, . . . , kn⟩ ∈ Zn ⊂ Rn (that is, ki ∈ Z for all i), we can define the dyadic cube Ck,N

in Rn as

Ck,N :=

{
x = ⟨x1, . . . , xn⟩ ∈ Rn | ki

2N
≤ xi <

ki + 1

2N
for all i

}
For a fixed N, the collection of all dyadic cubes DN (Rn) := {Ck,N | for all k ∈ Zn}
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The volume of a dyadic cube Ck,N in Rn is
1

2Nn

Upper Bound
Let X ⊂ R. A number M ∈ R is an upper bound of X if for every x ∈ X, we have that x ≤M .

Lower Bound
Let X ⊂ R. A number m ∈ R is a lower bound of X if for every x ∈ X, we have that m ≤ x.

Supremum
Let q be an upper bound of X. We say q is the supremum of X (or least upper bound of X) if for all
upper bounds M of X, we have that q ≤ M . We write q := sup(X). If X is not bounded above, we write
sup(X) = ∞.

Infimum
Let p be a lower bound of X. We say p is the infimum of X (or greatest lower bound of X) if for all
lower bounds m of X, we have that m ≤ p. We write p := inf(X). If X is not bounded below, we write
inf(X) = −∞.

Supremum and Infimum of a Function
Let f : Rn → R be a function, and D ⊂ Rn an arbitrary subset. We will consider the following quantities:

MD(f) := sup{f(x) | x ∈ D}

mD(f) := inf{f(x) | x ∈ D}

Darboux Sums
Let f : Rn → R be a bounded function with bounded support. The N -th upper Darboux sum and N -th
lower Darboux sum of f are defined as follows:

UN (f) :=
∑

C∈DN (Rn)

MC(f) · vol(C) =
1

2Nn

∑
C∈DN (Rn)

MC(f)

LN (f) :=
∑

C∈DN (Rn)

mC(f) · vol(C) =
1

2Nn

∑
C∈DN (Rn)

mC(f)

Darboux Integrals
Let f : Rn → R be a bounded function with bounded support. The upper Darboux integral and lower
Darboux integral of f are defined as

U(f) := lim
N→∞

UN (f)

L(f) := lim
N→∞

LN (f)

Definition of Integrability
Let f : Rn → R be a bounded function with bounded support. We say that f is integrable if U(f) = L(f).
The integral of f is defined as ∫

Rn

f(x) dV := U(f) = L(f)

This is equivalent to stating that for any ε > 0, there exists N such that

|UN (f)− LN (f)| < ε
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Indicator Function, Extensions, and Integrals
Let B ⊂ Rn be a subset. The indicator function 1B : Rn → R is the function defined by

1B(x) :=

{
1 if x ∈ B

0 if x /∈ B

And given a function f : Rn → R, then the function f(x)1B(x) is the piecewise function defined by

f(x)1B(x) :=

{
f(x) if x ∈ B

0 if x /∈ B

Furthermore, let A ⊂ Rn, and let f : A → R be a function. We can extend f to a function f̃ : Rn → R
by defining

f̃(x) :=

{
f(x) if x ∈ A

0 if x /∈ A

We will often use the following abusive notation when we want to indicate the domain A:

f̃(x)1A(x) := f(x)

Taken together, we have the following:
Let B ⊂ Rn, and let f : A ⊂ Rn → R be an integrable function. Then we can define the integral of f

over B as ∫
B

f(x) dV :=

∫
Rn

f̃(x)1A(x)1B(x) dV

By construction, we have the properties of the integral:∫
Rn

f(x) dV =

∫
B

f̃(x) dV =

∫
Rn

f̃(x)1B(x) dV =

∫
Rn

f̃(x)1A(x)1B(x) dV

Properties of Integrals
Let f, g : Rn → R be two integrable functions. Then

(a) f + g is also integrable, and ∫
Rn

(f + g) dV =

∫
Rn

f dV +

∫
Rn

g dV

(b) If λ ∈ R, then λf is integrable, and ∫
Rn

λf dV = λ

∫
Rn

f dV

(c) If f(x) ≤ g(x) for all x ∈ Rn, then ∫
Rn

f dV ≤
∫
Rn

g dV

(d) |f |(x) := |f(x)| is integrable, and ∣∣∣∣∫
Rn

f dV

∣∣∣∣ = ∫
Rn

|f | dV
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Auxiliary Functions f+ and f−

Given a function f : Rn → R, we define two auxiliary non-negative functions, f+ and f−.

f+(x) :=

{
f(x) if f(x) ≥ 0

0 otherwise

f−(x) :=

{
−f(x) if f(x) ≤ 0

0 otherwise

Calculating Multivariable Integrals

Fubini’s Theorem
Let f(x) : Rn → R be a continuous function that is bounded with bounded support, and let (i1, . . . , in) be
a permutation of the set {1, . . . , n}. Then∫

Rn

f(x) dV =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x) dxi1 · · · dxin

That is, we can compute an integral over Rn of f(x) dV as an iterated integral, in any variable order!

Decomposition of Domains
Let K be a compact (closed and bounded) subset in Rn such that its boundary ∂K has volume zero.
Furthermore, let K = K1 ∪K2, such that K1 and K2 are compact, and the intersection K1 ∩K2 has volume
zero.

Let f : K → R be a continuous function. Then f is integrable over K1 and K2, and∫
K

f(x) dA =

∫
K1

f(x) dA+

∫
K2

f(x) dA

Volume of Integrating Region
Let A ⊂ Rn. If 1A : Rn → R is integrable, then the n-dimensional volume of A is given by

voln(A) :=

∫
Rn

1A dV

n+ 1 Dimensional Volume of the Graph Γf

If X ⊂ Rn is a closed and bounded (compact) region and f : X → R is a continuous function, then the
(n+ 1)-dimensional volume of the graph Γf is 0.

Product of Integrals
Suppose that f(x) is integrable on Rn, and g(y) is integrable on Rm. Then h(x,y) = f(x)g(y) is integrable
on Rn+m, and ∫

Rn+m

h dV dW =

(∫
Rn

f dV

)(∫
Rm

g dW

)
Note that x and y must be different variables

Vertically Simple
A subset D ⊂ R2 is vertically simple if it is the region between the graphs of two continuous functions
y = g1(x) and y = g2(x) over a fixed interval of x-values [a, b].
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Horizontally Simple
A subset D ⊂ R2 is horizontally simple if it is the region between the graphs of two continuous functions
x = h1(y) and x = h2(y) over a fixed interval of y-values [c, d].

Oscillation of a Function
Let f : Rn → R be a function, and let A ⊂ Rn. The oscillation of f over A is defined as

oscA(f) :=MA(f)−mA(f)

Open Ball
An open ball B ⊂ Rn of radius δ > 0, centered on x, is the set

B = {v ∈ Rn | ∥x− v∥ < δ}

Measure of a Set
A set X ⊂ Rn has measure zero if for every ε > 0, there exists an infinite sequence of open balls Bi such
that

X ⊂
⋃
i

Bi and
∑
i

voln(Bi) < ε

Note: A set of volume 0 has measure zero, but on the other hand, it is possible that X has measure zero,
but vol(X) is undefined.

Expansion of Definition of Integrability
Let f : Rn → R be a bounded function with bounded support. Then the following are equivalent:

(a) f is integrable.

(b) For any ε > 0, there exists N such that for all n > N , Un(f)− Ln(f) < ε.

(c) For any ε > 0, there exists N such that, UN (f)− LN (f) < ε.

wwww�
Integrability Criterion I: A function f : Rn → R is integrable if and only if

(a) f is bounded with bounded support,

(b) For all ε > 0, there exists N such that ∑
{C∈DN (Rn)|oscC(f)>ε}

voln(C) < ε

wwww�
Integrability Criterion II:Let f : Rn → R be a bounded function with bounded support. If f is continuous

except on a set of volume zero, then f is integrable. wwww�
Integrability Criterion III: A function f : Rn → R is integrable if and only if
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(a) f is bounded with bounded support

(b) f is continuous except on a set of measure 0

Volume Zero
A bounded set X ⊂ Rn has n-dimensional volume 0 if and only if for every ϵ > 0, there exists M such that∑

C∈DM (Rn)|C∩X ̸=∅

voln(C) < ε

If X ⊂ Rn is a closed and bounded (compact) region, and f : X → R is a continuous function, then

voln+1(Γf ) = 0

Polar, Cylindrical, and Spherical Coordinates:

Radially Simple
A region R is called radially simple if it is the region between the graphs of two continuous functions r1(θ)
and r2(θ) over a fixed interval of θ-values. That is,

R = {(r, θ) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)}

Consider:

0 1 2 3
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

r = θ

r = 2θ

Double Integral in Polar Coordinates
If f(x, y) is a continuous function on a radially simple domain R, then the double integral of f over R in
polar coordinates is given by∫ ∫

R

f(x, y) dA =

∫ β

α

∫ r=r2(θ)

r=r1(θ)

f(r cos(θ), r sin(θ)) r dr dθ
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Note the additional r term which is the result of the general change of variables formula.

Consider an example:
r = 2− 2 sin(θ)

A =

∫ 2π

0

∫ 2−2 sin(θ)

0

r dr dθ

=

∫ 2π

0

[
1

2
r2
]2−2 sin(θ)

0

dθ

=

∫ 2π

0

1

2
(2− 2 sin(θ))2 dθ

=
1

2

∫ 2π

0

(4− 8 sin(θ) + 4 sin2(θ)) dθ

=
1

2

(∫ 2π

0

4 dθ −
∫ 2π

0

8 sin(θ) dθ +

∫ 2π

0

4 sin2(θ) dθ

)
=

1

2

(
4θ
∣∣∣2π
0

− 8(− cos(θ))
∣∣∣2π
0

+ 4

∫ 2π

0

sin2(θ) dθ

)
=

1

2

(
8π + 4

∫ 2π

0

sin2(θ) dθ

)
=

1

2

(
8π + 4

∫ 2π

0

1− cos(2θ)

2
dθ

)
(using the identity sin2(θ) =

1− cos(2θ)

2
)

=
1

2

(
8π + 4π −

∫ 2π

0

cos(2θ) dθ

)
=

1

2
(12π − 0) (since the integral of cos(2θ) over a full period is 0)

= 6π

0 1 2 3 4 5
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

Rectangular to Cylindrical Coordinates
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Given a point (x, y, z) in Euclidean coordinates, we can convert it to a point (r, θ, z) in cylindrical coordinates
by setting

z = z, r =
√
x2 + y2, tan(θ) =

y

x

(assuming x ̸= 0).

Cylindrical to Rectangular Coordinates
Given a point (r, θ, z) in cylindrical coordinates, we can convert it to a point (x, y, z) in rectangular coor-
dinates by setting

x = r cos(θ), y = r sin(θ), z = z

Rectangular to Spherical Coordinates
Given a point (x, y, z) in standard Euclidean coordinates, we can convert it to spherical coordinates by
setting

ρ =
√
x2 + y2 + z2, tan(θ) =

y

x
, cos(ϕ) =

z

ρ

Spherical to Rectangular Coordinates
Given a point (ρ, θ, ϕ) in spherical coordinates, we can convert it to standard Euclidean coordinates by
setting

x = ρ sin(ϕ) cos(θ), y = ρ sin(ϕ) sin(θ), z = ρ cos(ϕ)

Centrally Simple
A solid region R ⊂ R3 is called centrally simple if R is of the form

R = {(ρ, θ, ϕ) | θ1 ≤ θ ≤ θ2, ϕ1 ≤ ϕ ≤ ϕ2, ρ1(θ, ϕ) ≤ ρ ≤ ρ2(θ, ϕ)}

Triple Integrals in Spherical Coordinates
Let f(x, y, z) be a continuous function on a centrally simple region R. Define

g(θ, ϕ, ρ) = f(ρ sin(ϕ) cos(θ), ρ sin(ϕ) sin(θ), ρ cos(ϕ))

Then the integral of f over R is given by∫ ∫ ∫
R

f(x, y, z) dV =

∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ=ρ2(θ,ϕ)

ρ=ρ1(θ,ϕ)

g(θ, ϕ, ρ) ρ2 sin(ϕ) dρ dϕ dθ

Like with double integrals in polar, there is an extra term ρ2 sin(ϕ) from the general change of variables
formula.

Linear Algebra Review

Linear Maps
A linear map T : V →W is defined as follows for all k ∈ N, αi ∈ R, and all vectors xi ∈ V :

T

(
k∑

i=1

αixi

)
=

k∑
i=1

αiT (xi)

Equivalently, a linear map will satisfy the following:

i T (u+ v) = T (u) + T (v)
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ii T (λu) = λT (u)

Additionally, a map T : Rn → Rm is linear if and only if there is a matrix A in Mm×n(R) such that

T (x) = Ax

We call A the standard matrix of T .

Standard Matrix
Given a basis B = {e1, . . . , en}, the standard matrix A of a linear map T : Rn → Rm is given by

[
A
]
=

 | | |
T (e1) T (e2) · · · T (en)

| | |

 ∈Mm×n(R)

Area of a Parallelogram
Let P be the parallelogram spanned by u = ⟨A,B⟩ and v = ⟨C,D⟩ in R2.

area(P ) =

∣∣∣∣det [A B
C D

]∣∣∣∣
That is, the absolute value of a 2×2 determinant equals the area of the parallelogram spanned by the rows.

Volume of a Parallelepiped
Let D be the parallelepiped spanned by vectors u,v, and w in R3. Then the volume of D is given by the
absolute value of the scalar triple product:

volume(D) = |u · (v ×w)| =

∣∣∣∣∣∣det
uv
w

∣∣∣∣∣∣
This generalizes in the following way. Let D be the parallelepiped spanned by vectors v1,v2, . . . ,vn in

Rn. Then the n-dimensional volume of D is given by the absolute value of the determinant:

voln(D) =

∣∣∣∣∣∣∣det
v1

...
vn


∣∣∣∣∣∣∣

Volume of a Region Under a Linear Transformation
Let D ⊂ Rn and T (x) = Ax be a linear transformation. The volume of D, voln(D), and the volume of the
transformed region T (D) are related by:

voln(T (D)) = |det(A)| voln(D)

where det(A) is the determinant of A.

Injective
Let f : V →W be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection)

if the following holds: For all v1,v2 ∈ V , if f(v1) = f(v2), then v1 = v2.
That is, a map f is injective if any element in the codomain of f is the image of at most one element in

its domain.
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V W

v1

v2

f(v1)

f(v2)

f(v3)

f(v4)

(Non-linear) Change of Variables

The Jacobian
Let f : A ⊂ Rm → Rn be a multivariable function defined by f i : A ⊂ Rm → R:

f(x) =

f
1(x)
...

fn(x)

 .
The Jacobian matrix of f at x0 is

[Jf (x0)] =


D1f

1(x0) D2f
1(x0) · · · Dmf

1(x0)
D1f

2(x0) D2f
2(x0) · · · Dmf

2(x0)
...

...
. . .

...
D1f

n(x0) D2f
n(x0) · · · Dmf

n(x0)

 ,
if the partial derivatives exist.

Determinant of the Jacobian
Given a differentiable map G(u, v) = (x(u, v), y(u, v)), the Jacobian matrix, denoted as [JG], is the matrix
of partial derivatives:

[JG] =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
.

The determinant of the Jacobian matrix is denoted as Jac(G). Thus,

det([JG]) = Jac(G) =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Approximation of the Volume of a Non-Linear Map
Let D ⊂ Rn be a region such that voln(D) is small, and let p ∈ D. Let G : Rn → Rn be a differentiable
map. Then

voln(G(D)) ≈ |det ([JG](p))| voln(D).

That is, the n-dimensional volume of G(D) can be approximated by the n-dimensional volume of [JG](p)(D).
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Change of Variables
Let K ⊂ Rn be a compact set such that voln(∂K) = 0. Let U ⊂ Rn be an open set containing K. Let
G : U → Rn be a map such that:

1. G is differentiable.

2. G is injective on the interior of K.

3. det([JG]) ̸= 0 on the interior of K.

Then, if f : G(K) → R is a continuous function, then∫
G(K)

f dV =

∫
K

(f ◦G) |det([JG])| dV.

Sometimes, it is easier to consider a map in the reverse direction, denoted as

F (x,y) = (u(x, y), v(x, y)).

Then let G = F−1. If G = F−1 and det([JG]) ̸= 0, then

det([JG]) =
1

det([JF ])
.

Example of Change of Variables - Volume of a Unit Sphere in R3

Consider the volume of the unit sphere in R3. The spherical coordinates transformation F maps from
spherical coordinates (ρ, θ, ϕ) to Cartesian coordinates (x, y, z) and is given by:

F (ρ, θ, ϕ) =

ρ sin(ϕ) cos(θ)ρ sin(ϕ) sin(θ)
ρ cos(ϕ)

 .
The Jacobian matrix [JF ] of this transformation is:

[JF ] =

sin(ϕ) cos(θ) −ρ sin(ϕ) sin(θ) ρ cos(ϕ) cos(θ)
sin(ϕ) sin(θ) ρ sin(ϕ) cos(θ) ρ cos(θ) sin(ϕ)

cos(ϕ) 0 −ρ sin(ϕ)



det = cos(ϕ) · det
[
−ρ sin(ϕ) sin(θ) ρ cos(ϕ) cos(θ)
ρ sin(ϕ) cos(θ) ρ sin(θ) cos(ϕ)

]
− 0 · det

[
sin(ϕ) cos(θ) ρ cos(ϕ) cos(θ)
sin(ϕ) sin(θ) ρ sin(θ) cos(ϕ)

]
+ (−ρ sin(ϕ)) · det

[
sin(ϕ) cos(θ) −ρ sin(ϕ) sin(θ)
sin(ϕ) sin(θ) ρ sin(ϕ) cos(θ)

]
= cos(ϕ) · ((−ρ sin(ϕ) sin(θ)) · (ρ sin(θ) cos(ϕ))− (ρ cos(ϕ) cos(θ)) · (ρ sin(ϕ) cos(θ)))

+ ρ sin(ϕ) · ((sin(ϕ) cos(θ)) · (ρ sin(ϕ) cos(θ))− (−ρ sin(ϕ) sin(θ)) · (sin(ϕ) sin(θ)))
= ρ2 cos(ϕ) sin(ϕ) sin2(θ)− ρ2 cos2(ϕ) cos(θ) sin(ϕ)

+ ρ2 sin(ϕ) cos(θ) sin2(ϕ) + ρ2 sin3(ϕ) sin(θ) cos(θ)

= ρ2 sin(ϕ)(cos(ϕ) sin2(θ)− cos2(ϕ) cos(θ) + sin2(ϕ) cos(θ) + sin2(θ) cos(θ) sin(ϕ))

= ρ2 sin(ϕ)(cos(ϕ)− cos2(ϕ) + sin2(ϕ))

= − ρ2 sin(ϕ).
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The determinant of the Jacobian matrix det([JF ]) is:

det([JF ]) = −ρ2 sin(θ).

And we consider:

|det([JF ])| = ρ2 sin(θ).

To find the volume of the unit sphere, integrate det([JF ]) over the appropriate bounds for ρ, θ, and ϕ:

Volume =

∫ 2π

0

∫ π

0

∫ 1

0

ρ2 sin(θ) dρ dθ dϕ.

Volume =

∫ 2π

0

∫ π

0

∫ 1

0

r2 sin(θ) dρ dθ dϕ

=

∫ 2π

0

∫ π

0

[
1

3
ρ3
]1
0

sin(θ) dθ dϕ

=

∫ 2π

0

∫ π

0

1

3
sin(θ) dθ dϕ

=

∫ 2π

0

[
−1

3
cos(θ)

]π
0

dϕ

=

∫ 2π

0

2

3
dϕ

=

[
2

3
ϕ

]2π
0

=
4π

3
.

Volume of the Unit Ball in R4 Using Spherical Coordinates
The spherical coordinate system in R4 extends the traditional system in R3 by introducing an additional

angle, leading to coordinates (r, ψ, θ, ϕ). In this system, a point in R4 is represented as:

x = r sin(ψ) sin(θ) cos(ϕ),

y = r sin(ψ) sin(θ) sin(ϕ),

z = r sin(ψ) cos(θ),

w = r cos(ψ),

where 0 ≤ r ≤ 1, 0 ≤ ψ ≤ π, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π.
The volume of the unit ball in R4 is computed using the integral:

Volume =

∫ 1

0

∫ π

0

∫ π

0

∫ 2π

0

∣∣−r3 sin2(ψ) sin(θ)∣∣ dϕ dθ dψ dr.
Without delving into the specifics of the Jacobian determinant calculation, this setup directly leads to

the volume of the unit ball in R4 being π2

2 .

Post Midterm 1 Material

12



1 Curves and Surfaces

Surjective
A map f : X → Y is surjective if for every y ∈ Y , there exists an x ∈ X such that f(x) = y.

Injective
A map f : X → Y is injective if f(x1) = f(x2) =⇒ x1 = x2

1.1 Curves

Strict Parametrization
A strict parametrization of a curve C ⊂ Rn is a vector-valued function r(t) : (a, b) ⊂ R → C satisfying the
following conditions:

1. r(t) surjects onto C.

2. r(t) is injective for all t ∈ (a, b).

3. r(t) is differentiable.

4. r′(t) ̸= 0 for all t ∈ (a, b).

Arclength
Let C be a curve in Rn, and let r(t) : (a, b) → Rn be a (strict) parametrization of C. Then the arclength
of C is defined to be the integral ∫ b

a

∥r′(t)∥ dt

Scalar Line Integral
Let f : Rn → R be a function of n variables, and let C be a curve in Rn. Let r(t) : (a, b) → Rn be a (strict)
parametrization of C. Then the scalar line integral of f over C is denoted

∫
C
f ds, and is defined as the

integral ∫ b

a

f(r(t)) ∥r′(t)∥ dt

Open Subset
Let A ⊂ Rn. We say that A is an open subset of Rn if A does not contain any of its boundary points. That
is,

A ∩ ∂A = ∅

Parameterization of a Curve (non-strict)
Let C be a curve in Rn. Let A ⊂ R be a subset such that vol1(∂A) = 0. Let X ⊂ A be a subset such that
A−X is open. Then γ : A→ Rn is a parametrization of C if:

1. C ⊂ γ(A) (that is, γ surjects onto C).

2. γ(A−X) ⊂ C, and γ : A−X → C is injective.

3. γ(t) is differentiable for all t ∈ A−X.

4. γ′(t) ̸= 0 for all t ∈ A−X.

5. vol1(X) = 0.
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1.2 Surfaces

Strict Parameterization of a Surface
A strict parametrization of a surface S ⊂ R3 is a multivariable function G(u, v) : U ⊂ R2 → S satisfying
the following conditions:

1. U is an open set.

2. G(u, v) surjects onto S.

3. G(u, v) is injective for all u ∈ U .

4. G(u, v) is differentiable for all u ∈ U (that is, ∂G/∂u and ∂G/∂v exist).

5. The Jacobian matrix [JG(u, v)] is injective (i.e., has full rank) for all u ∈ U .

Useful Statements on Injectivity
The following statements are equivalent about a linear transformation T : Rn → Rm with standard matrix
A:

1. T is injective.

2. The only solution to the equation Ax = 0 is x = 0.

3. If the equation Ax = b has a solution, it is unique.

4. The columns of A are linearly independent.

Tangent Plane to Surface
The tangent plane to a surface S at a point G(u0, v0) is spanned by the vectors

∂G

∂u
(u0, v0) =

(
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0),

∂z

∂u
(u0, v0)

)
and

∂G

∂v
(u0, v0) =

(
∂x

∂v
(u0, v0),

∂y

∂v
(u0, v0),

∂z

∂v
(u0, v0)

)
.

Parameterization of a Surface (non-strict)
Let S ⊂ R3 be a surface. Let A ⊂ R2 be a subset such that vol2(∂A) = 0. Let X ⊂ A be a subset such that
A−X is open. Then a map γ : A→ R3 parametrizes S if:

1. S ⊂ γ(A) (that is, γ surjects onto S).

2. γ(A−X) ⊂ S, and γ : A−X → S is injective.

3. γ is differentiable for all u ∈ A−X.

4. [Jγ(u)] is injective for all u ∈ A−X.

5. vol2(X) = 0 and for any compact subset C ⊂ S, vol2(γ(X) ∩ C) = 0.

k-Dimensional Volume Zero
Let X ⊂ Rn be a bounded subset. We say that X has k-dimensional volume 0 (volk(X) = 0) if

lim
N→∞

∑
C∈DN (Rn)
C∩X ̸=∅

(
1

2N

)k

= 0.
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Furthermore, now let X ⊂ Rn be an arbitrary subset. We say that X has k-dimensional volume 0 if for all
R > 0, the intersection BR(0) ∩X has volume 0, where BR(0) denotes the ball of radius R centered at the
origin in Rn.

Surface Area Integral
Let S be a surface (strictly) parametrized by a function γ : U ⊂ R2 → R3. Then the surface area of S is
given by ∫

S
dS =

∫
U

∥∥∥∥∂γ∂u × ∂γ

∂v

∥∥∥∥ du dv,
where ∂γ

∂u and ∂γ
∂v are the partial derivatives of γ with respect to u and v, respectively, and × denotes the

cross product.

2 Manifolds

K-Dimensional Manifold as the Graph of a Function
A subset M ⊂ Rn is a differentiable k-dimensional manifold embedded in Rn if, for all x ∈ M, there exists
an open neighborhood U ⊂ Rn such that M∩ U is the graph of a C1 mapping f : Rk → Rn−k.

Parameterization of a Manifold
Let M ⊂ Rn be a k-dimensional manifold embedded in Rn. Let A ⊂ Rk be a subset such that volk(∂A) = 0.
Let X ⊂ A be a subset such that A−X is open. Then a map γ : A→ Rn parametrizes M if:

(a) M ⊂ γ(A) (that is, γ surjects onto M).

(b) γ(A−X) ⊂ M, and γ : A−X → M is injective.

(c) γ is differentiable for all u ∈ A−X.

(d) [Jγ(u)] is injective for all u ∈ A−X.

(e) volk(X) = 0 and for any compact subset C ⊂ M, volk(γ(X) ∩ C) = 0.

Differentiable Manifold and Tangent Space
Let M ⊂ Rn be a differentiable k-dimensional manifold. Consider a neighborhood U of a point z0 =
(x0,y0) ∈M such that the intersection of M and U can be represented as:

M ∩ U =
{
(x, f(x)) | x ∈ Rk

}
,

where f : Rk → Rn−k is a differentiable function that locally describes M in the neighborhood of z0.
The tangent space to M at z0, denoted Tz0

M , is defined as the graph of the derivative of f at x0,
denoted [Jf (x0)]. This derivative, also known as the Jacobian matrix of f at x0, maps directions in the
input space Rk to directions in the output space Rn−k, effectively describing how the manifold M changes
direction at the point z0. Mathematically, the tangent space can be expressed as:

Tz0M =
{
(x, [Jf (x0)](x)) | x ∈ Rk

}
.

The tangent space to a manifold described by a parameterization is defined as

Tγ(u)M = Im[Jγ(u)]

That is, the tangent space Tγ(u)M at u can be expressed as the image of the Jacobian matrix of φ at u,
which maps vectors from Rk into Rn. Mathematically, this is represented as:

Tγ(u)M =
{
[Jγ(u)](x) ∈ Rn | x ∈ Rk

}
.
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Volume of a k-Dimensional Parallelepiped in Rk

Let D be the k-dimensional parallelepiped spanned by v1, . . . ,vk in Rk. Consider the k× k matrix T given
by the vectors v1, . . . ,vk as columns. Then, the volume of D is given by

volume(D) = |det(T )| =
√

det(T⊤T ),

where T⊤ denotes the transpose of T .

Volume of a k-Dimensional Parallelepiped in Rk and Rn

Let D be the k-dimensional parallelepiped spanned by v1, . . . ,vk in Rk. Consider the k× k matrix T given
by the vectors v1, . . . ,vk as columns. Then, the volume of D in Rk is given by

volume(D) = |det(T )| =
√

det(T⊤T ),

where T⊤ denotes the transpose of T .

Furthermore, now let D be the k-dimensional parallelepiped spanned by v1, . . . ,vk in Rn. While the
det(T ) is meaningless in this context, we have

volume(D) =
√

det(T⊤T ),

meaning the k-dimensional volume in Rn.

Integral Over a Manifold
Let M ⊂ Rn be a differentiable k-dimensional manifold, let A ⊂ Rk be a set with well-defined volume, and
let γ : A→ Rn be a parametrization of M. Let f : Rn → R be a function. We say f is integrable over M if
the following integral exists and is well-defined:∫

M
f dM =

∫
A

f(γ(u))
√
det ([Jγ(u)]⊤[Jγ(u)]) du,

Useful Statements on Surjectivity
The following statements are equivalent about a linear transformation T : Rn → Rm with standard matrix
A:

(a) T is surjective.

(b) The columns of A span Rm.

(c) For every b ∈ Rm, there exists x ∈ Rn such that Ax = b.

(d) The rows of A are linearly indepedent.

2.1 Manifolds as Vanishing Loci

Vanishing Locus of a Function
Let f : X ⊂ Rn → Rm be a function. The vanishing locus of f (sometimes called the locus, or the zero
locus) is the set of points V (f) where f vanishes. That is,

V (f) = {x ∈ X | f(x) = 0}.

Locally showing a vanishing locus is a differentiable manifold
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Let M be a subset of Rn. Let U ⊂ Rn be open, and let F : U → Rn−k be a C1-mapping such that

M ∩ U = {z ∈ U | F (z) = 0}

If the derivative [JF (z)] is a surjective map for every z ∈ M ∩ U , then X ∩ U is a differentiable k-
dimensional manifold embedded in Rn.

Showing a vanishing locus is a differentiable manifold
Let M be a subset of Rn. If for every z ∈ M , there exists an open set U ⊂ Rn containing z, and a
C1-mapping F : U ⊂ Rn → Rn−k such that

M ∩ U = {z ∈ U | F (z) = 0}

and [JF (z)] is surjective for every z ∈M , then M is a differentiable k-dimensional manifold.

A differentiable manifold is locally a vanishing locus
LetM ⊂ Rn be differentiable k-dimensional manifold. Then every point z ∈M has a neighborhood U ⊂ Rn

such that there exists a C1-mapping F : U → Rn−k such that [JF (z)] is surjective, and

M ∩ U = {z ∈ U | F (z) = 0}

Inverse Image of a Manifold Theorem
Let M ⊂ Rm be a differentiable k-dimensional manifold embedded in Rm. Let U ⊂ Rn, and let f : U → Rm

be a C1-mapping. Define f−1(M) to be the inverse image of M ,

f−1(M) = {x ∈ Rn | f(x) ∈M}

If the derivative [Jf (x)] is a surjective map for every x ∈ f−1(M) in Rn, then f−1(M) is a differentiable
k + n−m-dimensional manifold embedded in Rn.

Independence of Coordinates Corollary
Let g : Rn → Rn be a mapping of the form

g(x) = Ax+ c

where A ∈ Mn×n(R) is an invertible n × n matrix. If M is a differentiable k-dimensional manifold, then
g(M) is also a differentiable k-dimensional manifold.

3 Vector Fields

Conservative Vector Field
A vector field F : Rn → Rn is called conservative if there exists a differentiable function f(x1, . . . , xn) such
that

F = ∇f =

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

The function f is called a potential function for F .

Divergence
Given a vector field F : Rn → Rn defined by F (u) = ⟨F1(u), . . . , Fn(u)⟩, the divergence of F is the
scalar-valued function divF : Rn → R defined by

divF (u) =
∂F1

∂x1
(u) + · · ·+ ∂Fn

∂xn
(u).
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In operator notation, this is written as

divF = ∇ · F =

〈
∂

∂x1
, . . . ,

∂

∂xn

〉
· F .

The divergence of a vector field at a point P measures the net flux of F out of an infinitesimally small
sphere centered at P . It characterizes the behavior of the vector field at P as follows:

• If divF (P ) > 0, then P is a source.

• If divF (P ) < 0, then P is a sink.

• If divF (P ) = 0, then P is said to be incompressible.

Curl
Given a vector field in R3, F = ⟨F1, F2, F3⟩, the curl of F is the vector field defined by

curlF =

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉
.

In operator notation, this can be written as

curlF = ∇× F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
× F .

Orientation of a Curve
Given a curve C, a continuous choice of tangent vector on C is called an orientation. A curve with a chosen
orientation is called an oriented curve. Moving along the chosen direction is called the positive direction
along C, and moving against the chosen orientation is called the negative direction (along C.

Given an oriented curve C in R2, we say that the positive direction across C is the direction that goes left
to right from the perspective of the positive orientation along C. Let n(p) denote the unit vector normal to
C at the point p, pointing in the positive direction across C.

Vector Line Integral
The line integral of a vector field F along an oriented curve C is denoted∫

C
F · dr.

We define it as the integral of the tangential component of F over C. Formally,∫
C
F · dr :=

∫
C
(F · T ) ds

where T is the unit tangent vector to C, and ds represents a differential element of arc length along C.
Let r(t) be a positively oriented regular parametrization of an oriented curve C for a ≤ t ≤ b. Then the

line integral of F along C can be computed as∫
C
F · dr =

∫ b

a

F (r(t)) · r′(t) dt.

If F = ⟨F1, F2, F3⟩, then another common notation for line integrals is∫
C
F · dr =

∫
C
F1 dx+ F2 dy + F3 dz.

Properties of Vector Line Integrals
Let C be a smooth oriented curve, and let F and G be vector fields.

1. Linearity:
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• The line integral is linear with respect to vector fields:∫
C
(F +G) · dr =

∫
C
F · dr +

∫
C
G · dr.

• The line integral respects scalar multiplication:∫
C
cF · dr = c

∫
C
F · dr.

2. Additivity:

• If C is the union of smooth curves C1, . . . , Cn, then∫
C
F · dr =

∫
C1

F · dr + · · ·+
∫
Cn

F · dr.

3. Reversing Orientation:

• If the orientation of C is reversed, denoted as −C, then∫
−C

F · dr = −
∫
C
F · dr.

Fundamental Theorem of Conservative Vector Fields
Let F = ∇f be a conservative vector field on a domain D. If r is a path along a curve C from point P to
Q in D, then ∫

C
F · dr = f(Q)− f(P ).

In particular, this implies that F is path-independent.
Corollary: Let F = ∇f be a conservative vector field on a domain D. If r is a path along a closed

curve C in D, then the circulation is zero: ∮
C
F · dr = 0.

Simply Connected
A simply connected domain is a path-connected domain where one can continuously shrink any simple closed
curve into a point while remaining within the domain. For two-dimensional regions, a simply connected
domain is one without holes. For three-dimensional domains, the concept of simply connected is more
subtle; it refers to a domain without any holes going all the way through it.

From Zero Curl to Conservative
Let F be a vector field on a simply-connected domain D. If F satisfies the cross-partials condition (that is,
the curl of F is zero), then F is conservative.

Path Independence
A vector field F on a domain D is path-independent if for any two points P,Q ∈ D, then∫

C1

F · dr =

∫
C2

F · dr

for any two paths C1, C2 in D that start at P and end at Q.

Normal Vector to Curve
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Let r(t) = ⟨x(t), y(t)⟩ be a positively oriented parametrization of an oriented curve C. Observe that
N(t) = ⟨y′(t),−x′(t)⟩ is normal to C. Therefore, the unit normal vector n(t) at any point on C is given by

n(t) =
N(t)

∥N(t)∥
.

Vector Flux Integral
The flux integral of a vector field F along an oriented curve C in R2 is the integral of the normal component
of F : ∫

C
F · n ds.

Let r(t) = ⟨x(t), y(t)⟩ be a positively oriented parametrization of an oriented curve C for a ≤ t ≤ b. Then
the flux integral of F along C can be computed as∫

C
F · n ds =

∫ b

a

F (r(t)) ·N(t) dt.

Surface Orientation
Given a surface S ⊂ R3, a continuous choice of unit normal vector on S is called an orientation. A surface
with a chosen orientation is called an oriented surface.

Recall that given a parametrization G(u, v) of S, then the normal vector at a point P = G(u0, v0) on S
is determined by

N(P ) =
∂G

∂u
(u0, v0)×

∂G

∂v
(u0, v0).

Given an oriented surface, we say that a parametrization is positively oriented if the orientation given by

N(P )

∥N(P )∥

agrees with the orientation of S.
If G(u, v) is a strict parametrization of S, then the Jacobian matrix [JG(u, v)] is injective. Hence,

∂G
∂u (u0, v0) and ∂G

∂v (u0, v0) are linearly independent, so N(P ) ̸= 0. Otherwise, we have to worry about
singularities in S.

Vector Surface Integral
The vector surface integral of F over S is defined as∫∫

S
F · dS :=

∫∫
S
(F · n) dS.

This is also known as the flux of F across (or through) S.
Let G(u, v) : A ⊆ R2 → R3 be an oriented parametrization of a surface S. Then the vector surface

integral can be computed as∫∫
S
(F · n) dS =

∫∫
A−X

F (G(u, v)) ·N(u, v) du dv,

where N(u, v) is the normal vector at the point (u, v) on the parametrization domain A, ensuring the
orientation matches that of S.

Flipped Orientation
If −S denotes S with the opposite orientation, then the vector surface integral with the flipped orientation
is given by ∫∫

−S
(F · n) dS = −

∫∫
S
(F · n) dS.
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Simple Closed Curve
A simple closed curve C is a closed curve that does not intersect itself.

Note: A simple closed curve C in R3 can be thought of as the boundary of a surface S in R3.

Jordan Curve Theorem
A simple closed curve C in R2 splits R2 into exactly two regions: an interior region D, and the exterior
region R2 −D.

4 Green’s theorem, Stokes’ theorem, and the Divergence theorem

Green’s Theorem
Let D be a region in R2 such that ∂D is a disjoint union of simple closed curves, with ∂D oriented so that
D is always to the left. Suppose F = ⟨F1, F2⟩ is a smooth vector field on D. Then∮

∂D

F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA.

Green’s Theorem in Circulation Form
Let D be a region in R2 such that ∂D is a simple closed curve, oriented counterclockwise. Suppose
F = ⟨F1, F2⟩ is a smooth vector field on D. Then∮

∂D

F · dr =

∫∫
D

curlz(F ) dA.

Green’s Theorem in Flux Form
Let D be a region in R2 such that ∂D is a simple closed curve, oriented counterclockwise. Suppose
F = ⟨F1, F2⟩ is a smooth vector field on D. Then∮

∂D

F · n ds =
∫∫

D

div(F ) dA.

Additivity of Circulation
Let D be a region in R2 such that ∂D is a simple closed curve, oriented counterclockwise. If we decompose
a domain D into two domains D1 and D2 which intersect only on their boundaries, ∂D1 and ∂D2, then∮

∂D

F · dr =

∮
∂D1

F · dr +

∮
∂D2

F · dr.

Upper Half Space
The upper half-space Hk ⊂ Rk is the (closed) set

Hk := {x = ⟨x1, . . . , xk⟩ | xk ≥ 0}.

This is a k-dimensional manifold with boundary

∂Hk = {⟨x1, . . . , xk⟩ | xk = 0}.

Manifold with Boundary
A subset M ⊂ Rn is a differentiable k-dimensional manifold with boundary embedded in Rn if for all
z ∈ M, either:
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1. There exists an open neighborhood U ⊂ Rn such that there exists a C1-mapping F : U → Rn−k such
that

• M∩ U = {z ∈ U | F (z) = 0}
• [JF (z)] is surjective.

2. Or, there exists an open neighborhood V ⊂ Rn such that there exists a C1-mapping G : V → Rm+n−k

such that

• G(x) = ⟨F1(x), F2(x)⟩
• F1 : V → Rn−k, and F2 : V → Rm

• G(z) = 0

• M∩ V = {x ∈ V | F1(x) = 0, F2(x) ≥ 0}
• [JG(z)] is surjective.

We say that the set of points z ∈ M satisfying the latter condition are the boundary of M.
If z ∈ ∂M satisfies the latter condition, we say that z is a corner point of codimension m. In the special

case m = 1, then we say that z is in the smooth boundary of M (denoted ∂sM). The set of corner points
that is not in ∂sM is called the non-smooth boundary of M.

Boundary Orientation
Recall that an orientation of a surface S in R3 is a (continuous) choice of a unit normal vector n(P ) at
each point P on S. If S is an oriented surface, then we can specify an orientation of the boundary ∂S.

The boundary orientation of ∂S is chosen so that if your feet are on S, and your head is where the head
of n(P ) is, then the orientation of ∂S is chosen so that S is always to your left.

Stoke’s Theorem
Let G(u, v) : D → R3 be a positively oriented parametrization of a surface S. This determines an orientation
on ∂S as described previously. Suppose F is a smooth vector field on a solid region W containing S. Then∮

∂S
F · dr =

∫∫
S
curl(F ) · n dS,

where n is the unit normal vector to S, chosen according to the orientation of S.

Corollary of Stoke’s Theorem: Interpreting Curl
Suppose F is a vector field in R3, and consider a plane through a point X ∈ R3 with unit normal vector n.
Let C be a small circle of radius ϵ in the plane, centered at P , which encloses a disk D in the plane. Then∮

∂D

F · dr =

∫∫
D

curl(F ) · n dS ≈ (curl(F )(P ) · n)area(D).

Thus,

(curl(F )(P ) · n) ≈ 1

area(D)

∮
∂D

F · dr.

Therefore, the circulation of F in a given plane depends on the angle between curl(F ) and n.

Closed Surface
A closed surface is a surface with boundary (i.e., a 2-dimensional manifold with boundary) that has no
boundary. That is, ∂S = ∅.

Corollary: Let S be a closed surface. Then∫∫
S
curl(F ) · n dS = 0.
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Vector Potential
Let F be a vector field defined on a region W ⊂ R3. Suppose

F = curl(A)

for some vector field A. Then A is called a vector potential for F on W .
Warning: Vector potentials are not unique.

Theorem from Stoke’s & Vector Potentials
If A is a vector potential for F on W , then under the conditions of Stoke’s theorem,∫∫

S
F · n dS =

∫∫
S
curl(A) · n dS =

∮
∂S

A · dr.

In other words, the surface integral of F = curl(A) is surface-independent.
Corollary: If F has a vector potential A on W , and S is a closed surface in W , then∫∫

S
F · n dS = 0.

Divergence Theorem
Let S be a closed surface that encloses a region W ⊂ R3, such that S is piecewise smooth, and is oriented
by normal vectors pointing away from W .

If F is a smooth vector field defined on an open region containing W , then∫∫
S
F · n dS =

∫∫∫
W

div(F ) dV.
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