32BH Notes

Brendan Connelly

January to March 2024

Upper and Lower Darboux Sums \rightarrow Integral

Bounded Subset

A subset $D \subset \mathbb{R}^n$ is bounded if there exists some $r > 0$ such that $D \subset B_r(\mathbf{0})$.

Bounded Function

A function $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is bounded if its image $\{f(x) \mid x \in A\}$ is a bounded subset of \mathbb{R} .

Boundary Point

A point $\boldsymbol{x} \in \mathbb{R}^n$ is a boundary point of $D \subset \mathbb{R}^n$ if: for all $\varepsilon > 0$,

1. $B_{\varepsilon}(\boldsymbol{x}) \cap D$ is non-empty, and

2. $B_{\varepsilon}(\boldsymbol{x}) \cap D^c$ is non-empty.

Closure

The closure of a set $D \subset \mathbb{R}^n$ is the union of D and the boundary of D. That is, the closure is the set

$$
\overline{D} = \{ \mathbf{x} \in \mathbb{R}^n \mid B_r(\mathbf{x}) \cap D \neq \emptyset \text{ for all } r > 0 \}
$$

Support of a Function

The support of a function $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is the closure of the set of non-zero values of a function:

$$
\mathrm{supp}(f) := \overline{\{x \in A \mid f(x) \neq 0\}}
$$

Bounded Support

A function has bounded support if its support is bounded. Equivalently, there exists $R > 0$ such that $f(\boldsymbol{x}) = 0$ for all $\|\boldsymbol{x}\| > R$.

Partition

A partition of a set X is a collection of non-empty subsets $X_\alpha \subset X$ such that every element of $x \in X$ is in exactly one X_{α} .

Dyadic Cubes

Given a vector $\mathbf{k} = \langle k_1, \ldots, k_n \rangle \in \mathbb{Z}^n \subset \mathbb{R}^n$ (that is, $k_i \in \mathbb{Z}$ for all i), we can define the dyadic cube $C_{\mathbf{k},N}$ in \mathbb{R}^n as

$$
C_{\mathbf{k},N} := \left\{ \boldsymbol{x} = \langle x_1, \dots, x_n \rangle \in \mathbb{R}^n \mid \frac{k_i}{2^N} \leq x_i < \frac{k_i+1}{2^N} \text{ for all } i \right\}
$$

For a fixed N, the collection of all dyadic cubes $D_N(\mathbb{R}^n) := \{C_{\mathbf{k},N} \mid \text{for all } \mathbf{k} \in \mathbb{Z}^n\}$

The volume of a dyadic cube $C_{\boldsymbol{k},N}$ in \mathbb{R}^n is $\frac{1}{2^N}$ 2^{Nn}

Upper Bound

Let $X \subset \mathbb{R}$. A number $M \in \mathbb{R}$ is an upper bound of X if for every $x \in X$, we have that $x \leq M$.

Lower Bound

Let $X \subset \mathbb{R}$. A number $m \in \mathbb{R}$ is a lower bound of X if for every $x \in X$, we have that $m \leq x$.

Supremum

Let q be an upper bound of X. We say q is the supremum of X (or least upper bound of X) if for all upper bounds M of X, we have that $q \leq M$. We write $q := \sup(X)$. If X is not bounded above, we write $\sup(X) = \infty$.

Infimum

Let p be a lower bound of X. We say p is the infimum of X (or greatest lower bound of X) if for all lower bounds m of X, we have that $m \leq p$. We write $p := \inf(X)$. If X is not bounded below, we write $inf(X) = -\infty$.

Supremum and Infimum of a Function

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function, and $D \subset \mathbb{R}^n$ an arbitrary subset. We will consider the following quantities:

$$
M_D(f) := \sup\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in D\}
$$

$$
m_D(f) := \inf\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in D\}
$$

Darboux Sums

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function with bounded support. The N-th upper Darboux sum and N-th lower Darboux sum of f are defined as follows:

$$
U_N(f) := \sum_{C \in D_N(\mathbb{R}^n)} M_C(f) \cdot \text{vol}(C) = \frac{1}{2^{Nn}} \sum_{C \in D_N(\mathbb{R}^n)} M_C(f)
$$

$$
L_N(f) := \sum_{C \in D_N(\mathbb{R}^n)} m_C(f) \cdot \text{vol}(C) = \frac{1}{2^{Nn}} \sum_{C \in D_N(\mathbb{R}^n)} m_C(f)
$$

Darboux Integrals

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function with bounded support. The upper Darboux integral and lower Darboux integral of f are defined as

$$
U(f) := \lim_{N \to \infty} U_N(f)
$$

$$
L(f) := \lim_{N \to \infty} L_N(f)
$$

Definition of Integrability

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function with bounded support. We say that f is integrable if $U(f) = L(f)$. The integral of f is defined as

$$
\int_{\mathbb{R}^n} f(\mathbf{x}) dV := U(f) = L(f)
$$

This is equivalent to stating that for any $\varepsilon > 0$, there exists N such that

$$
|U_N(f) - L_N(f)| < \varepsilon
$$

Indicator Function, Extensions, and Integrals

Let $B \subset \mathbb{R}^n$ be a subset. The indicator function $1_B : \mathbb{R}^n \to \mathbb{R}$ is the function defined by

$$
1_B(\boldsymbol{x}) := \begin{cases} 1 & \text{if } \boldsymbol{x} \in B \\ 0 & \text{if } \boldsymbol{x} \notin B \end{cases}
$$

And given a function $f: \mathbb{R}^n \to \mathbb{R}$, then the function $f(x)1_B(x)$ is the piecewise function defined by

$$
f(\boldsymbol{x})1_B(\boldsymbol{x}) := \begin{cases} f(\boldsymbol{x}) & \text{if } \boldsymbol{x} \in B \\ 0 & \text{if } \boldsymbol{x} \notin B \end{cases}
$$

Furthermore, let $A \subset \mathbb{R}^n$, and let $f : A \to \mathbb{R}$ be a function. We can extend f to a function $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ by defining

$$
\tilde{f}(\boldsymbol{x}) := \begin{cases} f(\boldsymbol{x}) & \text{if } \boldsymbol{x} \in A \\ 0 & \text{if } \boldsymbol{x} \notin A \end{cases}
$$

We will often use the following abusive notation when we want to indicate the domain A:

$$
\tilde{f}(\boldsymbol{x})1_A(\boldsymbol{x}):=f(\boldsymbol{x})
$$

Taken together, we have the following:

Let $B \subset \mathbb{R}^n$, and let $f : A \subset \mathbb{R}^n \to \mathbb{R}$ be an integrable function. Then we can define the integral of f over B as

$$
\int_B f(\boldsymbol{x})\,dV:=\int_{\mathbb{R}^n}\tilde{f}(\boldsymbol{x})1_A(\boldsymbol{x})1_B(\boldsymbol{x})\,dV
$$

By construction, we have the properties of the integral:

$$
\int_{\mathbb{R}^n} f(\boldsymbol{x}) dV = \int_B \tilde{f}(\boldsymbol{x}) dV = \int_{\mathbb{R}^n} \tilde{f}(\boldsymbol{x}) 1_B(\boldsymbol{x}) dV = \int_{\mathbb{R}^n} \tilde{f}(\boldsymbol{x}) 1_A(\boldsymbol{x}) 1_B(\boldsymbol{x}) dV
$$

Properties of Integrals

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be two integrable functions. Then

(a) $f + g$ is also integrable, and

$$
\int_{\mathbb{R}^n} (f+g) dV = \int_{\mathbb{R}^n} f dV + \int_{\mathbb{R}^n} g dV
$$

(b) If $\lambda \in \mathbb{R}$, then λf is integrable, and

$$
\int_{\mathbb{R}^n} \lambda f \, dV = \lambda \int_{\mathbb{R}^n} f \, dV
$$

(c) If $f(\mathbf{x}) \leq g(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$, then

$$
\int_{\mathbb{R}^n} f dV \le \int_{\mathbb{R}^n} g dV
$$

(d) $|f|(\boldsymbol{x}) := |f(\boldsymbol{x})|$ is integrable, and

$$
\int_{\mathbb{R}^n} f \, dV \bigg| = \int_{\mathbb{R}^n} |f| \, dV
$$

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ Auxiliary Functions f^+ and f^-

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, we define two auxiliary non-negative functions, f^+ and f^- .

$$
f^{+}(\boldsymbol{x}) := \begin{cases} f(\boldsymbol{x}) & \text{if } f(\boldsymbol{x}) \ge 0 \\ 0 & \text{otherwise} \end{cases}
$$

$$
f^{-}(\boldsymbol{x}) := \begin{cases} -f(\boldsymbol{x}) & \text{if } f(\boldsymbol{x}) \le 0 \\ 0 & \text{otherwise} \end{cases}
$$

Calculating Multivariable Integrals

Fubini's Theorem

Let $f(\boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R}$ be a continuous function that is bounded with bounded support, and let (i_1, \ldots, i_n) be a permutation of the set $\{1, \ldots, n\}$. Then

$$
\int_{\mathbb{R}^n} f(\boldsymbol{x}) dV = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(\boldsymbol{x}) dx_{i_1} \cdots dx_{i_n}
$$

That is, we can compute an integral over \mathbb{R}^n of $f(x)$ dV as an iterated integral, in any variable order!

Decomposition of Domains

Let K be a compact (closed and bounded) subset in \mathbb{R}^n such that its boundary ∂K has volume zero. Furthermore, let $K = K_1 \cup K_2$, such that K_1 and K_2 are compact, and the intersection $K_1 \cap K_2$ has volume zero.

Let $f: K \to \mathbb{R}$ be a continuous function. Then f is integrable over K_1 and K_2 , and

$$
\int_{K} f(\boldsymbol{x}) dA = \int_{K_1} f(\boldsymbol{x}) dA + \int_{K_2} f(\boldsymbol{x}) dA
$$

Volume of Integrating Region

Let $A \subset \mathbb{R}^n$. If $I_A : \mathbb{R}^n \to \mathbb{R}$ is integrable, then the *n*-dimensional volume of A is given by

$$
\text{vol}_n(A) := \int_{\mathbb{R}^n} 1_A dV
$$

$n+1$ Dimensional Volume of the Graph Γ_f

If $X \subset \mathbb{R}^n$ is a closed and bounded (compact) region and $f: X \to \mathbb{R}$ is a continuous function, then the $(n + 1)$ -dimensional volume of the graph Γ_f is 0.

Product of Integrals

Suppose that $f(x)$ is integrable on \mathbb{R}^n , and $g(y)$ is integrable on \mathbb{R}^m . Then $h(x, y) = f(x)g(y)$ is integrable on \mathbb{R}^{n+m} , and

$$
\int_{\mathbb{R}^{n+m}} h \, dV \, dW = \left(\int_{\mathbb{R}^n} f \, dV\right) \left(\int_{\mathbb{R}^m} g \, dW\right)
$$

Note that x and y must be different variables

Vertically Simple

A subset $D \subset \mathbb{R}^2$ is vertically simple if it is the region between the graphs of two continuous functions $y = g_1(x)$ and $y = g_2(x)$ over a fixed interval of x-values [a, b].

Horizontally Simple

A subset $D \subset \mathbb{R}^2$ is horizontally simple if it is the region between the graphs of two continuous functions $x = h_1(y)$ and $x = h_2(y)$ over a fixed interval of y-values [c, d].

Oscillation of a Function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, and let $A \subset \mathbb{R}^n$. The oscillation of f over A is defined as

$$
\operatorname{osc}_A(f) := M_A(f) - m_A(f)
$$

Open Ball

An open ball $B \subset \mathbb{R}^n$ of radius $\delta > 0$, centered on x , is the set

$$
B = \{ \boldsymbol{v} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{v}|| < \delta \}
$$

Measure of a Set

A set $X \subset \mathbb{R}^n$ has measure zero if for every $\varepsilon > 0$, there exists an infinite sequence of open balls B_i such that

$$
X \subset \bigcup_i B_i \text{ and } \sum_i \text{vol}_n(B_i) < \varepsilon
$$

Note: A set of volume 0 has measure zero, but on the other hand, it is possible that X has measure zero, but $vol(X)$ is undefined.

Expansion of Definition of Integrability

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function with bounded support. Then the following are equivalent:

- (a) f is integrable.
- (b) For any $\varepsilon > 0$, there exists N such that for all $n > N$, $U_n(f) L_n(f) < \varepsilon$.
- (c) For any $\varepsilon > 0$, there exists N such that, $U_N(f) L_N(f) < \varepsilon$.

$$
\bigcup_{\mathcal{L}}\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}\big(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}\big) \big|_{\mathcal{L}}
$$

Integrability Criterion I: A function $f : \mathbb{R}^n \to \mathbb{R}$ is integrable if and only if

- (a) f is bounded with bounded support,
- (b) For all $\varepsilon > 0$, there exists N such that

$$
\sum_{\{C \in D_N(\mathbb{R}^n) \mid \text{osc}_C(f) > \varepsilon\}} \text{vol}_n(C) < \varepsilon
$$

 \downarrow Integrability Criterion II:Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function with bounded support. If f is continuous except on a set of volume zero, then f is integrable.

> \parallel \mathbb{I} \mathbb{I} .II. \downarrow

> \parallel \mathbb{I} \mathbb{I} .II.

Integrability Criterion III: A function $f : \mathbb{R}^n \to \mathbb{R}$ is integrable if and only if

- (a) f is bounded with bounded support
- (b) f is continuous except on a set of measure 0

Volume Zero

A bounded set $X \subset \mathbb{R}^n$ has n-dimensional volume 0 if and only if for every $\epsilon > 0$, there exists M such that

$$
\sum_{C \in D_M(\mathbb{R}^n) \mid C \cap X \neq \emptyset} \text{vol}_n(C) < \varepsilon
$$

If $X \subset \mathbb{R}^n$ is a closed and bounded (compact) region, and $f: X \to \mathbb{R}$ is a continuous function, then

$$
\mathrm{vol}_{n+1}(\Gamma_f) = 0
$$

Polar, Cylindrical, and Spherical Coordinates:

Radially Simple

A region R is called radially simple if it is the region between the graphs of two continuous functions $r_1(\theta)$ and $r_2(\theta)$ over a fixed interval of θ -values. That is,

$$
R = \{(r, \theta) \mid \alpha \le \theta \le \beta, r_1(\theta) \le r \le r_2(\theta)\}\
$$

Consider:

Double Integral in Polar Coordinates

If $f(x, y)$ is a continuous function on a radially simple domain R, then the double integral of f over R in polar coordinates is given by

$$
\int \int_R f(x, y) dA = \int_{\alpha}^{\beta} \int_{r=r_1(\theta)}^{r=r_2(\theta)} f(r \cos(\theta), r \sin(\theta)) r dr d\theta
$$

Note the additional r term which is the result of the general change of variables formula.

Consider an example:

$$
r = 2 - 2\sin(\theta)
$$

$$
A = \int_0^{2\pi} \int_0^{2-2\sin(\theta)} r \, dr \, d\theta
$$

= $\int_0^{2\pi} \left[\frac{1}{2} r^2 \right]_0^{2-2\sin(\theta)} d\theta$
= $\int_0^{2\pi} \frac{1}{2} (2 - 2\sin(\theta))^2 \, d\theta$
= $\frac{1}{2} \int_0^{2\pi} (4 - 8\sin(\theta) + 4\sin^2(\theta)) \, d\theta$
= $\frac{1}{2} \left(\int_0^{2\pi} 4 \, d\theta - \int_0^{2\pi} 8\sin(\theta) \, d\theta + \int_0^{2\pi} 4\sin^2(\theta) \, d\theta \right)$
= $\frac{1}{2} \left(4\theta \Big|_0^{2\pi} - 8(-\cos(\theta)) \Big|_0^{2\pi} + 4 \int_0^{2\pi} \sin^2(\theta) \, d\theta \right)$
= $\frac{1}{2} \left(8\pi + 4 \int_0^{2\pi} \sin^2(\theta) \, d\theta \right)$
= $\frac{1}{2} \left(8\pi + 4 \int_0^{2\pi} \frac{1 - \cos(2\theta)}{2} \, d\theta \right)$ (using the identity $\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$)
= $\frac{1}{2} \left(8\pi + 4\pi - \int_0^{2\pi} \cos(2\theta) \, d\theta \right)$
= $\frac{1}{2} (12\pi - 0)$ (since the integral of $\cos(2\theta)$ over a full period is 0)
= 6π

Rectangular to Cylindrical Coordinates

Given a point (x, y, z) in Euclidean coordinates, we can convert it to a point (r, θ, z) in cylindrical coordinates by setting

$$
z = z
$$
, $r = \sqrt{x^2 + y^2}$, $\tan(\theta) = \frac{y}{x}$

(assuming $x \neq 0$).

Cylindrical to Rectangular Coordinates

Given a point (r, θ, z) in cylindrical coordinates, we can convert it to a point (x, y, z) in rectangular coordinates by setting

$$
x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = z
$$

Rectangular to Spherical Coordinates

Given a point (x, y, z) in standard Euclidean coordinates, we can convert it to spherical coordinates by setting

$$
\rho = \sqrt{x^2 + y^2 + z^2}, \quad \tan(\theta) = \frac{y}{x}, \quad \cos(\phi) = \frac{z}{\rho}
$$

Spherical to Rectangular Coordinates

Given a point (ρ, θ, ϕ) in spherical coordinates, we can convert it to standard Euclidean coordinates by setting

$$
x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)
$$

Centrally Simple

A solid region $R \subset \mathbb{R}^3$ is called centrally simple if R is of the form

$$
R = \{(\rho, \theta, \phi) \mid \theta_1 \le \theta \le \theta_2, \phi_1 \le \phi \le \phi_2, \rho_1(\theta, \phi) \le \rho \le \rho_2(\theta, \phi)\}
$$

Triple Integrals in Spherical Coordinates

Let $f(x, y, z)$ be a continuous function on a centrally simple region R. Define

$$
g(\theta, \phi, \rho) = f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi))
$$

Then the integral of f over R is given by

$$
\int \int \int_R f(x, y, z) dV = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{\rho = \rho_1(\theta, \phi)}^{\rho = \rho_2(\theta, \phi)} g(\theta, \phi, \rho) \rho^2 \sin(\phi) d\rho d\phi d\theta
$$

Like with double integrals in polar, there is an extra term $\rho^2 \sin(\phi)$ from the general change of variables formula.

Linear Algebra Review

Linear Maps

A linear map $T: V \to W$ is defined as follows for all $k \in \mathbb{N}, \alpha_i \in \mathbb{R}$, and all vectors $x_i \in V$:

$$
T\left(\sum_{i=1}^k \alpha_i \boldsymbol{x}_i\right) = \sum_{i=1}^k \alpha_i T(\boldsymbol{x}_i)
$$

Equivalently, a linear map will satisfy the following:

i $T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$

ii $T(\lambda \mathbf{u}) = \lambda T(\mathbf{u})$

Additionally, a map $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if and only if there is a matrix A in $M_{m \times n}(\mathbb{R})$ such that

 $T(x) = Ax$

We call A the standard matrix of T.

Standard Matrix

Given a basis $\mathcal{B} = \{e_1, \ldots, e_n\}$, the standard matrix A of a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$
[A] = \begin{bmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | & | \end{bmatrix} \in M_{m \times n}(\mathbb{R})
$$

Area of a Parallelogram

Let P be the parallelogram spanned by $u = \langle A, B \rangle$ and $v = \langle C, D \rangle$ in \mathbb{R}^2 .

$$
area(P) = \left| det \begin{bmatrix} A & B \\ C & D \end{bmatrix} \right|
$$

That is, the absolute value of a 2×2 determinant equals the area of the parallelogram spanned by the rows.

Volume of a Parallelepiped

Let D be the parallelepiped spanned by vectors u, v , and w in \mathbb{R}^3 . Then the volume of D is given by the absolute value of the scalar triple product:

$$
\text{volume}(D) = |\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})| = \left| \det \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{bmatrix} \right|
$$

This generalizes in the following way. Let D be the parallelepiped spanned by vectors v_1, v_2, \ldots, v_n in \mathbb{R}^n . Then the n-dimensional volume of D is given by the absolute value of the determinant:

$$
\mathrm{vol}_n(D) = \left| \det \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \right|
$$

Volume of a Region Under a Linear Transformation

Let $D \subset \mathbb{R}^n$ and $\tilde{T}(\boldsymbol{x}) = A\boldsymbol{x}$ be a linear transformation. The volume of D, vol_n (D) , and the volume of the transformed region $T(D)$ are related by:

$$
\text{vol}_n(T(D)) = |\text{det}(A)| \,\text{vol}_n(D)
$$

where $\det(A)$ is the determinant of A.

Injective

Let $f: V \to W$ be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection) if the following holds: For all $v_1, v_2 \in V$, if $f(v_1) = f(v_2)$, then $v_1 = v_2$.

That is, a map f is injective if any element in the codomain of f is the image of at most one element in its domain.

(Non-linear) Change of Variables

The Jacobian

Let $f: A \subset \mathbb{R}^m \to \mathbb{R}^n$ be a multivariable function defined by $f^i: A \subset \mathbb{R}^m \to \mathbb{R}$:

$$
f(\boldsymbol{x}) = \begin{bmatrix} f^1(\boldsymbol{x}) \\ \vdots \\ f^n(\boldsymbol{x}) \end{bmatrix}.
$$

The Jacobian matrix of f at x_0 is

$$
[J_f(\boldsymbol{x}_0)] = \begin{bmatrix} D_1 f^1(\boldsymbol{x}_0) & D_2 f^1(\boldsymbol{x}_0) & \cdots & D_m f^1(\boldsymbol{x}_0) \\ D_1 f^2(\boldsymbol{x}_0) & D_2 f^2(\boldsymbol{x}_0) & \cdots & D_m f^2(\boldsymbol{x}_0) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f^n(\boldsymbol{x}_0) & D_2 f^n(\boldsymbol{x}_0) & \cdots & D_m f^n(\boldsymbol{x}_0) \end{bmatrix},
$$

if the partial derivatives exist.

Determinant of the Jacobian

Given a differentiable map $G(u, v) = (x(u, v), y(u, v))$, the Jacobian matrix, denoted as [J_G], is the matrix of partial derivatives:

$$
[J_G] = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}
$$

.

The determinant of the Jacobian matrix is denoted as $Jac(G)$. Thus,

$$
\det([J_G]) = \operatorname{Jac}(G) = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}.
$$

Approximation of the Volume of a Non-Linear Map

Let $D \subset \mathbb{R}^n$ be a region such that $\text{vol}_n(D)$ is small, and let $p \in D$. Let $G : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map. Then

$$
\text{vol}_n(G(D)) \approx |\text{det}\left([J_G](p)\right)| \text{vol}_n(D).
$$

That is, the *n*-dimensional volume of $G(D)$ can be approximated by the *n*-dimensional volume of $[J_G](p)(D)$.

Change of Variables

Let $\tilde{K} \subset \mathbb{R}^n$ be a compact set such that $\mathrm{vol}_n(\partial K) = 0$. Let $U \subset \mathbb{R}^n$ be an open set containing K. Let $G: U \to \mathbb{R}^n$ be a map such that:

- 1. G is differentiable.
- 2. G is injective on the interior of K.
- 3. det($[J_G]$) \neq 0 on the interior of K.

Then, if $f: G(K) \to \mathbb{R}$ is a continuous function, then

$$
\int_{G(K)} f dV = \int_K (f \circ G) |\text{det}([J_G])| dV.
$$

Sometimes, it is easier to consider a map in the reverse direction, denoted as

$$
F(\boldsymbol{x},\boldsymbol{y}) = (u(x,y), v(x,y)).
$$

Then let $G = F^{-1}$. If $G = F^{-1}$ and $\det([J_G]) \neq 0$, then

$$
\det([J_G]) = \frac{1}{\det([J_F])}.
$$

Example of Change of Variables - Volume of a Unit Sphere in \mathbb{R}^3

Consider the volume of the unit sphere in \mathbb{R}^3 . The spherical coordinates transformation F maps from spherical coordinates (ρ, θ, ϕ) to Cartesian coordinates (x, y, z) and is given by:

$$
F(\rho, \theta, \phi) = \begin{bmatrix} \rho \sin(\phi) \cos(\theta) \\ \rho \sin(\phi) \sin(\theta) \\ \rho \cos(\phi) \end{bmatrix}.
$$

The Jacobian matrix $[J_F]$ of this transformation is:

$$
[J_F] = \begin{bmatrix} \sin(\phi)\cos(\theta) & -\rho\sin(\phi)\sin(\theta) & \rho\cos(\phi)\cos(\theta) \\ \sin(\phi)\sin(\theta) & \rho\sin(\phi)\cos(\theta) & \rho\cos(\theta)\sin(\phi) \\ \cos(\phi) & 0 & -\rho\sin(\phi) \end{bmatrix}
$$

$$
det = cos(\phi) \cdot det \begin{bmatrix} -\rho sin(\phi) sin(\theta) & \rho cos(\phi) cos(\theta) \\ \rho sin(\phi) cos(\theta) & \rho sin(\theta) cos(\phi) \end{bmatrix}
$$

\n
$$
- 0 \cdot det \begin{bmatrix} sin(\phi) cos(\theta) & \rho cos(\phi) cos(\theta) \\ sin(\phi) sin(\theta) & \rho sin(\theta) cos(\phi) \end{bmatrix}
$$

\n
$$
+ (-\rho sin(\phi)) \cdot det \begin{bmatrix} sin(\phi) cos(\theta) & -\rho sin(\phi) sin(\theta) \\ sin(\phi) sin(\theta) & \rho sin(\phi) cos(\theta) \end{bmatrix}
$$

\n
$$
= cos(\phi) \cdot ((-\rho sin(\phi) sin(\theta)) \cdot (\rho sin(\theta) cos(\phi)) - (\rho cos(\phi) cos(\theta)) \cdot (\rho sin(\phi) cos(\theta)))
$$

\n
$$
+ \rho sin(\phi) \cdot ((sin(\phi) cos(\theta)) \cdot (\rho sin(\phi) cos(\theta)) - (-\rho sin(\phi) sin(\theta)) \cdot (sin(\phi) sin(\theta)))
$$

\n
$$
= \rho^2 cos(\phi) sin(\phi) sin^2(\theta) - \rho^2 cos^2(\phi) cos(\theta) sin(\phi)
$$

\n
$$
+ \rho^2 sin(\phi) cos(\theta) sin^2(\phi) + \rho^2 sin^3(\phi) sin(\theta) cos(\theta)
$$

\n
$$
= \rho^2 sin(\phi) (cos(\phi) sin^2(\theta) - cos^2(\phi) cos(\theta) + sin^2(\phi) cos(\theta) + sin^2(\theta) cos(\theta) sin(\phi))
$$

\n
$$
= \rho^2 sin(\phi) (cos(\phi) - cos^2(\phi) + sin^2(\phi))
$$

\n
$$
= -\rho^2 sin(\phi).
$$

The determinant of the Jacobian matrix $\det([J_F])$ is:

$$
\det([J_F]) = -\rho^2 \sin(\theta).
$$

And we consider:

$$
|\det([J_F])| = \rho^2 \sin(\theta).
$$

To find the volume of the unit sphere, integrate det($[J_F]$) over the appropriate bounds for ρ , θ , and ϕ :

Volume =
$$
\int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^2 \sin(\theta) d\rho d\theta d\phi.
$$

Volume =
$$
\int_0^{2\pi} \int_0^{\pi} \int_0^1 r^2 \sin(\theta) d\rho d\theta d\phi
$$

\n=
$$
\int_0^{2\pi} \int_0^{\pi} \left[\frac{1}{3} \rho^3 \right]_0^1 \sin(\theta) d\theta d\phi
$$

\n=
$$
\int_0^{2\pi} \int_0^{\pi} \frac{1}{3} \sin(\theta) d\theta d\phi
$$

\n=
$$
\int_0^{2\pi} \left[-\frac{1}{3} \cos(\theta) \right]_0^{\pi} d\phi
$$

\n=
$$
\int_0^{2\pi} \frac{2}{3} d\phi
$$

\n=
$$
\left[\frac{2}{3} \phi \right]_0^{2\pi}
$$

\n=
$$
\frac{4\pi}{3}.
$$

Volume of the Unit Ball in \mathbb{R}^4 Using Spherical Coordinates

The spherical coordinate system in \mathbb{R}^4 extends the traditional system in \mathbb{R}^3 by introducing an additional angle, leading to coordinates (r, ψ, θ, ϕ) . In this system, a point in \mathbb{R}^4 is represented as:

$$
x = r \sin(\psi) \sin(\theta) \cos(\phi),
$$

\n
$$
y = r \sin(\psi) \sin(\theta) \sin(\phi),
$$

\n
$$
z = r \sin(\psi) \cos(\theta),
$$

\n
$$
w = r \cos(\psi),
$$

where $0 \le r \le 1$, $0 \le \psi \le \pi$, $0 \le \theta \le \pi$, and $0 \le \phi \le 2\pi$. The volume of the unit ball in \mathbb{R}^4 is computed using the integral:

Volume =
$$
\int_0^1 \int_0^{\pi} \int_0^{\pi} \int_0^{2\pi} \left| -r^3 \sin^2(\psi) \sin(\theta) \right| d\phi d\theta d\psi dr.
$$

Without delving into the specifics of the Jacobian determinant calculation, this setup directly leads to the volume of the unit ball in \mathbb{R}^4 being $\frac{\pi^2}{2}$ $\frac{1}{2}$.

Post Midterm 1 Material

1 Curves and Surfaces

Surjective

A map $f: X \to Y$ is surjective if for every $y \in Y$, there exists an $x \in X$ such that $f(x) = y$.

Injective

A map $f: X \to Y$ is injective if $f(x_1) = f(x_2) \implies x_1 = x_2$

1.1 Curves

Strict Parametrization

A strict parametrization of a curve $\mathcal{C} \subset \mathbb{R}^n$ is a vector-valued function $r(t) : (a, b) \subset \mathbb{R} \to \mathcal{C}$ satisfying the following conditions:

- 1. $r(t)$ surjects onto \mathcal{C} .
- 2. $r(t)$ is injective for all $t \in (a, b)$.
- 3. $r(t)$ is differentiable.
- 4. $\mathbf{r}'(t) \neq 0$ for all $t \in (a, b)$.

Arclength

Let C be a curve in \mathbb{R}^n , and let $r(t) : (a, b) \to \mathbb{R}^n$ be a (strict) parametrization of C. Then the arclength of C is defined to be the integral

$$
\int_a^b \|\boldsymbol{r}'(t)\| \ dt
$$

Scalar Line Integral

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function of n variables, and let C be a curve in \mathbb{R}^n . Let $r(t) : (a, b) \to \mathbb{R}^n$ be a (strict) parametrization of C. Then the scalar line integral of f over C is denoted $\int_C f ds$, and is defined as the integral

$$
\int_a^b f(\boldsymbol{r}(t)) \left\| \boldsymbol{r}'(t) \right\| \, dt
$$

Open Subset

Let $A \subset \mathbb{R}^n$. We say that A is an open subset of \mathbb{R}^n if A does not contain any of its boundary points. That is,

$$
A\cap\partial A=\varnothing
$$

Parameterization of a Curve (non-strict)

Let C be a curve in \mathbb{R}^n . Let $A \subset \mathbb{R}$ be a subset such that vol₁ $(\partial A) = 0$. Let $X \subset A$ be a subset such that $A - X$ is open. Then $\gamma : A \to \mathbb{R}^n$ is a parametrization of C if:

- 1. $\mathcal{C} \subset \gamma(A)$ (that is, γ surjects onto \mathcal{C}).
- 2. $\gamma(A X) \subset \mathcal{C}$, and $\gamma : A X \to \mathcal{C}$ is injective.
- 3. $\gamma(t)$ is differentiable for all $t \in A X$.
- 4. $\gamma'(t) \neq \mathbf{0}$ for all $t \in A X$.
- 5. $vol_1(X) = 0$.

1.2 Surfaces

Strict Parameterization of a Surface

A strict parametrization of a surface $S \subset \mathbb{R}^3$ is a multivariable function $G(u, v) : U \subset \mathbb{R}^2 \to S$ satisfying the following conditions:

- 1. U is an open set.
- 2. $G(u, v)$ surjects onto S.
- 3. $G(u, v)$ is injective for all $u \in U$.
- 4. $G(u, v)$ is differentiable for all $u \in U$ (that is, $\partial G/\partial u$ and $\partial G/\partial v$ exist).
- 5. The Jacobian matrix $[J_G(u, v)]$ is injective (i.e., has full rank) for all $u \in U$.

Useful Statements on Injectivity

The following statements are equivalent about a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A:

- 1. T is injective.
- 2. The only solution to the equation $Ax = 0$ is $x = 0$.
- 3. If the equation $Ax = b$ has a solution, it is unique.
- 4. The columns of A are linearly independent.

Tangent Plane to Surface

The tangent plane to a surface S at a point $G(u_0, v_0)$ is spanned by the vectors

$$
\frac{\partial G}{\partial u}(u_0, v_0) = \left(\frac{\partial x}{\partial u}(u_0, v_0), \frac{\partial y}{\partial u}(u_0, v_0), \frac{\partial z}{\partial u}(u_0, v_0)\right)
$$

and

$$
\frac{\partial G}{\partial v}(u_0, v_0) = \left(\frac{\partial x}{\partial v}(u_0, v_0), \frac{\partial y}{\partial v}(u_0, v_0), \frac{\partial z}{\partial v}(u_0, v_0)\right).
$$

Parameterization of a Surface (non-strict)

Let $\mathcal{S} \subset \mathbb{R}^3$ be a surface. Let $A \subset \mathbb{R}^2$ be a subset such that $\text{vol}_2(\partial A) = 0$. Let $X \subset A$ be a subset such that $A - X$ is open. Then a map $\gamma : A \to \mathbb{R}^3$ parametrizes S if:

- 1. $S \subset \gamma(A)$ (that is, γ surjects onto S).
- 2. $\gamma(A X) \subset \mathcal{S}$, and $\gamma : A X \to \mathcal{S}$ is injective.
- 3. γ is differentiable for all $u \in A X$.
- 4. $[J_{\gamma}(u)]$ is injective for all $u \in A X$.
- 5. $vol_2(X) = 0$ and for any compact subset $\mathcal{C} \subset \mathcal{S}$, $vol_2(\gamma(X) \cap \mathcal{C}) = 0$.

k-Dimensional Volume Zero

Let $X \subset \mathbb{R}^n$ be a bounded subset. We say that X has k-dimensional volume 0 $(\text{vol}_k(X) = 0)$ if

$$
\lim_{N \to \infty} \sum_{\substack{C \in D_N(\mathbb{R}^n) \\ C \cap X \neq \varnothing}} \left(\frac{1}{2^N}\right)^k = 0.
$$

 $\frac{1}{k}$

Furthermore, now let $X \subset \mathbb{R}^n$ be an arbitrary subset. We say that X has k-dimensional volume 0 if for all $R > 0$, the intersection $B_R(0) \cap X$ has volume 0, where $B_R(0)$ denotes the ball of radius R centered at the origin in \mathbb{R}^n .

Surface Area Integral

Let S be a surface (strictly) parametrized by a function $\gamma: U \subset \mathbb{R}^2 \to \mathbb{R}^3$. Then the surface area of S is given by

$$
\int_{\mathcal{S}} d\mathcal{S} = \int_{U} \left\| \frac{\partial \gamma}{\partial u} \times \frac{\partial \gamma}{\partial v} \right\| du dv,
$$

where $\frac{\partial \gamma}{\partial u}$ and $\frac{\partial \gamma}{\partial v}$ are the partial derivatives of γ with respect to u and v, respectively, and \times denotes the cross product.

2 Manifolds

K-Dimensional Manifold as the Graph of a Function

A subset $\mathcal{M} \subset \mathbb{R}^n$ is a differentiable k-dimensional manifold embedded in \mathbb{R}^n if, for all $x \in \mathcal{M}$, there exists an open neighborhood $U \subset \mathbb{R}^n$ such that $\mathcal{M} \cap U$ is the graph of a C^1 mapping $f : \mathbb{R}^k \to \mathbb{R}^{n-k}$.

Parameterization of a Manifold

Let $\mathcal{M} \subset \mathbb{R}^n$ be a k-dimensional manifold embedded in \mathbb{R}^n . Let $A \subset \mathbb{R}^k$ be a subset such that $\text{vol}_k(\partial A) = 0$. Let $X \subset A$ be a subset such that $A - X$ is open. Then a map $\gamma : A \to \mathbb{R}^n$ parametrizes M if:

- (a) $\mathcal{M} \subset \gamma(A)$ (that is, γ surjects onto \mathcal{M}).
- (b) $\gamma(A X) \subset \mathcal{M}$, and $\gamma : A X \to \mathcal{M}$ is injective.
- (c) γ is differentiable for all $u \in A X$.
- (d) $[J_{\gamma}(u)]$ is injective for all $u \in A X$.
- (e) vol_k $(X) = 0$ and for any compact subset $\mathcal{C} \subset \mathcal{M}$, vol_k $(\gamma(X) \cap \mathcal{C}) = 0$.

Differentiable Manifold and Tangent Space

Let $M \subset \mathbb{R}^n$ be a differentiable k-dimensional manifold. Consider a neighborhood U of a point $z_0 =$ $(\boldsymbol{x}_0, \boldsymbol{y}_0) \in M$ such that the intersection of M and U can be represented as:

$$
M\cap U=\left\{(\boldsymbol{x},f(\boldsymbol{x}))\mid\boldsymbol{x}\in\mathbb{R}^k\right\},\
$$

where $f: \mathbb{R}^k \to \mathbb{R}^{n-k}$ is a differentiable function that locally describes M in the neighborhood of z_0 .

The tangent space to M at z_0 , denoted $T_{z_0}M$, is defined as the graph of the derivative of f at x_0 , denoted $[J_f(\pmb{x}_0)]$. This derivative, also known as the Jacobian matrix of f at \pmb{x}_0 , maps directions in the input space \mathbb{R}^k to directions in the output space \mathbb{R}^{n-k} , effectively describing how the manifold M changes direction at the point z_0 . Mathematically, the tangent space can be expressed as:

$$
T_{\boldsymbol{z}_0}M = \left\{(\boldsymbol{x},[J_f(\boldsymbol{x}_0)](\boldsymbol{x}))\mid \boldsymbol{x}\in\mathbb{R}^k\right\}.
$$

The tangent space to a manifold described by a parameterization is defined as

$$
T\gamma(\boldsymbol{u})M=\text{Im}[J\gamma(\boldsymbol{u})]
$$

That is, the tangent space $T\gamma(\mathbf{u})M$ at \mathbf{u} can be expressed as the image of the Jacobian matrix of φ at \mathbf{u} , which maps vectors from \mathbb{R}^k into \mathbb{R}^n . Mathematically, this is represented as:

$$
T\gamma(\boldsymbol{u})M = \{ [J\gamma(\boldsymbol{u})](\boldsymbol{x}) \in \mathbb{R}^n \mid \boldsymbol{x} \in \mathbb{R}^k \}.
$$

Volume of a $k\text{-}\mathbf{Dimensional~Parallelepiped~in}~\mathbb{R}^k$

Let D be the k-dimensional parallelepiped spanned by v_1, \ldots, v_k in \mathbb{R}^k . Consider the $k \times k$ matrix T given by the vectors v_1, \ldots, v_k as columns. Then, the volume of D is given by

$$
volume(D) = |\det(T)| = \sqrt{\det(T^{\top}T)},
$$

where T^{\top} denotes the transpose of T.

Volume of a k -Dimensional Parallelepiped in \mathbb{R}^k and \mathbb{R}^n

Let D be the k-dimensional parallelepiped spanned by v_1, \ldots, v_k in \mathbb{R}^k . Consider the $k \times k$ matrix T given by the vectors v_1, \ldots, v_k as columns. Then, the volume of D in \mathbb{R}^k is given by

$$
volume(D) = |\det(T)| = \sqrt{\det(T^{\top}T)},
$$

where T^{\top} denotes the transpose of T.

Furthermore, now let D be the k-dimensional parallelepiped spanned by v_1, \ldots, v_k in \mathbb{R}^n . While the $\det(T)$ is meaningless in this context, we have

$$
volume(D) = \sqrt{\det(T^{\top}T)},
$$

meaning the k-dimensional volume in \mathbb{R}^n .

Integral Over a Manifold

Let $\mathcal{M} \subset \mathbb{R}^n$ be a differentiable k-dimensional manifold, let $A \subset \mathbb{R}^k$ be a set with well-defined volume, and let $\gamma: A \to \mathbb{R}^n$ be a parametrization of M. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. We say f is integrable over M if the following integral exists and is well-defined:

$$
\int_{\mathcal{M}} f d\mathcal{M} = \int_{A} f(\gamma(\boldsymbol{u})) \sqrt{\det\left([J_{\gamma}(\boldsymbol{u})]^{\top} [J_{\gamma}(\boldsymbol{u})]\right)} \, d\boldsymbol{u},
$$

Useful Statements on Surjectivity

The following statements are equivalent about a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A:

- (a) T is surjective.
- (b) The columns of A span \mathbb{R}^m .
- (c) For every $\mathbf{b} \in \mathbb{R}^m$, there exists $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$.
- (d) The rows of A are linearly indepedent.

2.1 Manifolds as Vanishing Loci

Vanishing Locus of a Function

Let $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ be a function. The vanishing locus of f (sometimes called the locus, or the zero locus) is the set of points $V(f)$ where f vanishes. That is,

$$
V(f) = \{ \mathbf{x} \in X \mid f(\mathbf{x}) = 0 \}.
$$

Locally showing a vanishing locus is a differentiable manifold

Let M be a subset of \mathbb{R}^n . Let $U \subset \mathbb{R}^n$ be open, and let $F: U \to \mathbb{R}^{n-k}$ be a C^1 -mapping such that

$$
M\cap U=\{\boldsymbol{z}\in U\mid F(\boldsymbol{z})=\boldsymbol{0}\}
$$

If the derivative $[J_F(z)]$ is a surjective map for every $z \in M \cap U$, then $X \cap U$ is a differentiable kdimensional manifold embedded in \mathbb{R}^n .

Showing a vanishing locus is a differentiable manifold

Let M be a subset of \mathbb{R}^n . If for every $z \in M$, there exists an open set $U \subset \mathbb{R}^n$ containing z, and a C^1 -mapping $F: U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ such that

$$
M \cap U = \{ \boldsymbol{z} \in U \mid F(\boldsymbol{z}) = \boldsymbol{0} \}
$$

and $[J_F(z)]$ is surjective for every $z \in M$, then M is a differentiable k-dimensional manifold.

A differentiable manifold is locally a vanishing locus

Let $M \subset \mathbb{R}^n$ be differentiable k-dimensional manifold. Then every point $\boldsymbol{z} \in M$ has a neighborhood $U \subset \mathbb{R}^n$ such that there exists a C^1 -mapping $F: U \to \mathbb{R}^{n-k}$ such that $[J_F(z)]$ is surjective, and

$$
M \cap U = \{ z \in U \mid F(z) = \mathbf{0} \}
$$

Inverse Image of a Manifold Theorem

Let $M \subset \mathbb{R}^m$ be a differentiable k-dimensional manifold embedded in \mathbb{R}^m . Let $U \subset \mathbb{R}^n$, and let $f: U \to \mathbb{R}^m$ be a C^1 -mapping. Define $f^{-1}(M)$ to be the inverse image of M,

$$
f^{-1}(M) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) \in M \}
$$

If the derivative $[J_f(\boldsymbol{x})]$ is a surjective map for every $\boldsymbol{x} \in f^{-1}(M)$ in \mathbb{R}^n , then $f^{-1}(M)$ is a differentiable $k + n - m$ -dimensional manifold embedded in \mathbb{R}^n .

Independence of Coordinates Corollary

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a mapping of the form

$$
g(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{c}
$$

where $A \in M_{n \times n}(\mathbb{R})$ is an invertible $n \times n$ matrix. If M is a differentiable k-dimensional manifold, then $g(M)$ is also a differentiable k-dimensional manifold.

3 Vector Fields

Conservative Vector Field

A vector field $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is called conservative if there exists a differentiable function $f(x_1, \ldots, x_n)$ such that ∂f

$$
\boldsymbol{F} = \nabla f = \left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle.
$$

The function f is called a potential function for \boldsymbol{F} .

Divergence

Given a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\mathbf{F}(\mathbf{u}) = \langle F_1(\mathbf{u}), \ldots, F_n(\mathbf{u}) \rangle$, the divergence of \mathbf{F} is the scalar-valued function $\text{div}\mathbf{F}:\mathbb{R}^n\to\mathbb{R}$ defined by

$$
\mathrm{div}\boldsymbol{F}(\boldsymbol{u})=\frac{\partial F_1}{\partial x_1}(\boldsymbol{u})+\cdots+\frac{\partial F_n}{\partial x_n}(\boldsymbol{u}).
$$

In operator notation, this is written as

$$
\mathrm{div}\boldsymbol{F}=\nabla\cdot\boldsymbol{F}=\left\langle \frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right\rangle\cdot\boldsymbol{F}.
$$

The divergence of a vector field at a point P measures the net flux of \bf{F} out of an infinitesimally small sphere centered at P . It characterizes the behavior of the vector field at P as follows:

- If $div F(P) > 0$, then P is a source.
- If $div F(P) < 0$, then P is a sink.
- If div $F(P) = 0$, then P is said to be incompressible.

Curl

Given a vector field in \mathbb{R}^3 , $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$, the curl of \mathbf{F} is the vector field defined by

$$
\text{curl}\boldsymbol{F} = \left\langle \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right\rangle.
$$

In operator notation, this can be written as

$$
\operatorname{curl} \boldsymbol{F} = \nabla \times \boldsymbol{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \times \boldsymbol{F}.
$$

Orientation of a Curve

Given a curve \mathcal{C} , a continuous choice of tangent vector on \mathcal{C} is called an orientation. A curve with a chosen orientation is called an oriented curve. Moving along the chosen direction is called the positive direction along \mathcal{C} , and moving against the chosen orientation is called the negative direction (along \mathcal{C} .

Given an oriented curve C in \mathbb{R}^2 , we say that the positive direction across C is the direction that goes left to right from the perspective of the positive orientation along C. Let $n(p)$ denote the unit vector normal to $\mathcal C$ at the point p, pointing in the positive direction across $\mathcal C$.

Vector Line Integral

The line integral of a vector field \boldsymbol{F} along an oriented curve $\mathcal C$ is denoted

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}.
$$

We define it as the integral of the tangential component of \bf{F} over \bf{C} . Formally,

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} := \int_{\mathcal{C}} (\boldsymbol{F} \cdot \boldsymbol{T}) \, ds
$$

where T is the unit tangent vector to C , and ds represents a differential element of arc length along C .

Let $r(t)$ be a positively oriented regular parametrization of an oriented curve C for $a \le t \le b$. Then the line integral of \bf{F} along \bf{C} can be computed as

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{r}'(t) dt.
$$

If $F = \langle F_1, F_2, F_3 \rangle$, then another common notation for line integrals is

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{\mathcal{C}} F_1 dx + F_2 dy + F_3 dz.
$$

Properties of Vector Line Integrals

Let $\mathcal C$ be a smooth oriented curve, and let $\mathbf F$ and $\mathbf G$ be vector fields.

1. Linearity:

• The line integral is linear with respect to vector fields:

$$
\int_{\mathcal{C}} (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{r}.
$$

• The line integral respects scalar multiplication:

$$
\int_{\mathcal{C}} c\mathbf{F} \cdot d\mathbf{r} = c \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.
$$

2. Additivity:

• If C is the union of smooth curves C_1, \ldots, C_n , then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} + \dots + \int_{\mathcal{C}_n} \mathbf{F} \cdot d\mathbf{r}.
$$

3. Reversing Orientation:

• If the orientation of C is reversed, denoted as $-\mathcal{C}$, then

$$
\int_{-\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = -\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}.
$$

Fundamental Theorem of Conservative Vector Fields

Let $\mathbf{F} = \nabla f$ be a conservative vector field on a domain D. If r is a path along a curve C from point P to Q in D , then

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = f(Q) - f(P).
$$

In particular, this implies that F is path-independent.

Corollary: Let $\mathbf{F} = \nabla f$ be a conservative vector field on a domain D. If r is a path along a closed curve $\mathcal C$ in D , then the circulation is zero:

$$
\oint_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = 0.
$$

Simply Connected

A simply connected domain is a path-connected domain where one can continuously shrink any simple closed curve into a point while remaining within the domain. For two-dimensional regions, a simply connected domain is one without holes. For three-dimensional domains, the concept of simply connected is more subtle; it refers to a domain without any holes going all the way through it.

From Zero Curl to Conservative

Let \bf{F} be a vector field on a simply-connected domain D. If \bf{F} satisfies the cross-partials condition (that is, the curl of \bf{F} is zero), then \bf{F} is conservative.

Path Independence

A vector field **F** on a domain D is path-independent if for any two points $P, Q \in D$, then

$$
\int_{\mathcal{C}_1} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{\mathcal{C}_2} \boldsymbol{F} \cdot d\boldsymbol{r}
$$

for any two paths C_1, C_2 in D that start at P and end at Q.

Normal Vector to Curve

Let $r(t) = \langle x(t), y(t) \rangle$ be a positively oriented parametrization of an oriented curve C. Observe that $\mathbf{N}(t) = \langle y'(t), -x'(t) \rangle$ is normal to C. Therefore, the unit normal vector $\mathbf{n}(t)$ at any point on C is given by

$$
\boldsymbol{n}(t) = \frac{\boldsymbol{N}(t)}{\|\boldsymbol{N}(t)\|}.
$$

Vector Flux Integral

The flux integral of a vector field \bm{F} along an oriented curve \mathcal{C} in \mathbb{R}^2 is the integral of the normal component of \boldsymbol{F} :

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot \boldsymbol{n} \, ds.
$$

Let $r(t) = \langle x(t), y(t) \rangle$ be a positively oriented parametrization of an oriented curve C for $a \le t \le b$. Then the flux integral of \boldsymbol{F} along $\mathcal C$ can be computed as

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot \boldsymbol{n} \, ds = \int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{N}(t) \, dt.
$$

Surface Orientation

Given a surface $S \subset \mathbb{R}^3$, a continuous choice of unit normal vector on S is called an orientation. A surface with a chosen orientation is called an oriented surface.

Recall that given a parametrization $G(u, v)$ of S, then the normal vector at a point $P = G(u_0, v_0)$ on S is determined by

$$
\mathbf{N}(P) = \frac{\partial \mathbf{G}}{\partial u}(u_0, v_0) \times \frac{\partial \mathbf{G}}{\partial v}(u_0, v_0).
$$

Given an oriented surface, we say that a parametrization is positively oriented if the orientation given by

$$
\frac{\mathbf{N}(P)}{\|\mathbf{N}(P)\|}
$$

agrees with the orientation of S .

If $G(u, v)$ is a strict parametrization of S, then the Jacobian matrix $[J_G(u, v)]$ is injective. Hence, $\frac{\partial G}{\partial u}(u_0, v_0)$ and $\frac{\partial G}{\partial v}(u_0, v_0)$ are linearly independent, so $N(P) \neq 0$. Otherwise, we have to worry about singularities in S .

Vector Surface Integral

The vector surface integral of \bf{F} over \cal{S} is defined as

$$
\iint_{\mathcal{S}} \boldsymbol{F} \cdot d\mathcal{S} := \iint_{\mathcal{S}} (\boldsymbol{F} \cdot \boldsymbol{n}) \, d\mathcal{S}.
$$

This is also known as the flux of \boldsymbol{F} across (or through) \mathcal{S} .

Let $G(u, v) : A \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ be an oriented parametrization of a surface S. Then the vector surface integral can be computed as

$$
\iint_{S} (\mathbf{F} \cdot \mathbf{n}) dS = \iint_{A-X} \mathbf{F}(\mathbf{G}(u, v)) \cdot \mathbf{N}(u, v) du dv,
$$

where $\mathbf{N}(u, v)$ is the normal vector at the point (u, v) on the parametrization domain A, ensuring the orientation matches that of S.

Flipped Orientation

If $-\mathcal{S}$ denotes \mathcal{S} with the opposite orientation, then the vector surface integral with the flipped orientation is given by

$$
\iint_{-\mathcal{S}} (\mathbf{F} \cdot \mathbf{n}) d\mathcal{S} = -\iint_{\mathcal{S}} (\mathbf{F} \cdot \mathbf{n}) d\mathcal{S}.
$$

Simple Closed Curve

A simple closed curve $\mathcal C$ is a closed curve that does not intersect itself.

Note: A simple closed curve C in \mathbb{R}^3 can be thought of as the boundary of a surface S in \mathbb{R}^3 .

Jordan Curve Theorem

A simple closed curve C in \mathbb{R}^2 splits \mathbb{R}^2 into exactly two regions: an interior region D, and the exterior region $\mathbb{R}^2 - D$.

4 Green's theorem, Stokes' theorem, and the Divergence theorem

Green's Theorem

Let D be a region in \mathbb{R}^2 such that ∂D is a disjoint union of simple closed curves, with ∂D oriented so that D is always to the left. Suppose $\mathbf{F} = \langle F_1, F_2 \rangle$ is a smooth vector field on D. Then

$$
\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA.
$$

Green's Theorem in Circulation Form

Let D be a region in \mathbb{R}^2 such that ∂D is a simple closed curve, oriented counterclockwise. Suppose $\mathbf{F} = \langle F_1, F_2 \rangle$ is a smooth vector field on D. Then

$$
\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_D \text{curl}_z(\mathbf{F}) \, dA.
$$

Green's Theorem in Flux Form

Let D be a region in \mathbb{R}^2 such that ∂D is a simple closed curve, oriented counterclockwise. Suppose $\mathbf{F} = \langle F_1, F_2 \rangle$ is a smooth vector field on D. Then

$$
\oint_{\partial D} \boldsymbol{F} \cdot \boldsymbol{n} \, ds = \iint_D \text{div}(\boldsymbol{F}) \, dA.
$$

Additivity of Circulation

Let D be a region in \mathbb{R}^2 such that ∂D is a simple closed curve, oriented counterclockwise. If we decompose a domain D into two domains D_1 and D_2 which intersect only on their boundaries, ∂D_1 and ∂D_2 , then

$$
\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial D_1} \mathbf{F} \cdot d\mathbf{r} + \oint_{\partial D_2} \mathbf{F} \cdot d\mathbf{r}.
$$

Upper Half Space

The upper half-space $H_k \subset \mathbb{R}^k$ is the (closed) set

$$
H_k:=\{\boldsymbol{x}=\langle x_1,\ldots,x_k\rangle\mid x_k\geq 0\}.
$$

This is a k -dimensional manifold with boundary

$$
\partial H_k = \{ \langle x_1, \ldots, x_k \rangle \mid x_k = 0 \}.
$$

Manifold with Boundary

A subset $\mathcal{M} \subset \mathbb{R}^n$ is a differentiable k-dimensional manifold with boundary embedded in \mathbb{R}^n if for all $z \in \mathcal{M}$, either:

- 1. There exists an open neighborhood $U \subset \mathbb{R}^n$ such that there exists a C^1 -mapping $F: U \to \mathbb{R}^{n-k}$ such that
	- $M \cap U = \{ z \in U \mid F(z) = 0 \}$
	- $[J_F(z)]$ is surjective.
- 2. Or, there exists an open neighborhood $V \subset \mathbb{R}^n$ such that there exists a C^1 -mapping $G: V \to \mathbb{R}^{m+n-k}$ such that
	- $G(\boldsymbol{x}) = \langle F_1(\boldsymbol{x}), F_2(\boldsymbol{x}) \rangle$
	- $F_1: V \to \mathbb{R}^{n-k}$, and $F_2: V \to \mathbb{R}^m$
	- $G(z) = 0$
	- $\mathcal{M} \cap V = \{ \mathbf{x} \in V \mid F_1(\mathbf{x}) = \mathbf{0}, F_2(\mathbf{x}) \ge 0 \}$
	- $[J_G(z)]$ is surjective.

We say that the set of points $z \in M$ satisfying the latter condition are the boundary of M.

If $z \in \partial M$ satisfies the latter condition, we say that z is a corner point of codimension m. In the special case $m = 1$, then we say that z is in the smooth boundary of M (denoted $\partial_s \mathcal{M}$). The set of corner points that is not in $\partial_s \mathcal{M}$ is called the non-smooth boundary of M.

Boundary Orientation

Recall that an orientation of a surface S in \mathbb{R}^3 is a (continuous) choice of a unit normal vector $n(P)$ at each point P on S. If S is an oriented surface, then we can specify an orientation of the boundary ∂S .

The boundary orientation of ∂S is chosen so that if your feet are on S, and your head is where the head of $n(P)$ is, then the orientation of ∂S is chosen so that S is always to your left.

Stoke's Theorem

Let $G(u, v): D \to \mathbb{R}^3$ be a positively oriented parametrization of a surface S. This determines an orientation on ∂S as described previously. Suppose F is a smooth vector field on a solid region W containing S. Then

$$
\oint_{\partial S} \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_{S} \operatorname{curl}(\boldsymbol{F}) \cdot \boldsymbol{n} \, dS,
$$

where n is the unit normal vector to S, chosen according to the orientation of S.

Corollary of Stoke's Theorem: Interpreting Curl

Suppose F is a vector field in \mathbb{R}^3 , and consider a plane through a point $X \in \mathbb{R}^3$ with unit normal vector n. Let C be a small circle of radius ϵ in the plane, centered at P, which encloses a disk D in the plane. Then

$$
\oint_{\partial D} \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_D \text{curl}(\boldsymbol{F}) \cdot \boldsymbol{n} \, dS \approx (\text{curl}(\boldsymbol{F})(P) \cdot \boldsymbol{n}) \text{area}(D).
$$

Thus,

$$
(\operatorname{curl}(\boldsymbol{F})(P) \cdot \boldsymbol{n}) \approx \frac{1}{\operatorname{area}(D)} \oint_{\partial D} \boldsymbol{F} \cdot d\boldsymbol{r}.
$$

Therefore, the circulation of F in a given plane depends on the angle between curl(F) and n.

Closed Surface

A closed surface is a surface with boundary (i.e., a 2-dimensional manifold with boundary) that has no boundary. That is, $\partial S = \emptyset$.

Corollary: Let S be a closed surface. Then

$$
\iint_{\mathcal{S}} \operatorname{curl}(\boldsymbol{F}) \cdot \boldsymbol{n} \, dS = 0.
$$

Vector Potential

Let **F** be a vector field defined on a region $W \subset \mathbb{R}^3$. Suppose

 $\boldsymbol{F} = \text{curl}(\boldsymbol{A})$

for some vector field A . Then A is called a vector potential for F on W .

Warning: Vector potentials are not unique.

Theorem from Stoke's & Vector Potentials

If A is a vector potential for F on W , then under the conditions of Stoke's theorem,

$$
\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \, dS = \iint_{S} \operatorname{curl}(\boldsymbol{A}) \cdot \boldsymbol{n} \, dS = \oint_{\partial S} \boldsymbol{A} \cdot d\boldsymbol{r}.
$$

In other words, the surface integral of $\mathbf{F} = \text{curl}(\mathbf{A})$ is surface-independent.

Corollary: If F has a vector potential A on W, and S is a closed surface in W, then

$$
\iint_{\mathcal{S}} \boldsymbol{F} \cdot \boldsymbol{n} \, dS = 0.
$$

Divergence Theorem

Let S be a closed surface that encloses a region $W \subset \mathbb{R}^3$, such that S is piecewise smooth, and is oriented by normal vectors pointing away from W.

If F is a smooth vector field defined on an open region containing W , then

$$
\iint_{\mathcal{S}} \boldsymbol{F} \cdot \boldsymbol{n} \, dS = \iiint_W \text{div}(\boldsymbol{F}) \, dV.
$$