32AH Notes

Brendan Connelly

December 2023

Linear Algebra

Vector Space Axioms

i Additive Associativity: $\boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}) = (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w}$

- ii Additive Identity: v + 0 = 0 + v = v
- iii Additive Inverse: For all $v \in V$ there exists a $w \in V$ such that v + w = 0
- iv Additive Commutativity: u + v = v + u
- v Scalar Associativity: $\lambda (\alpha \boldsymbol{v}) = (\lambda \alpha) \boldsymbol{v}$
- vi Scalar Identity: $1\boldsymbol{v} = \boldsymbol{v}$
- vii Distribution of Scalar Addition: $(\lambda + \alpha) \boldsymbol{u} = \lambda \boldsymbol{u} + \alpha \boldsymbol{u}$
- viii Distribution of Vector Addition: $\lambda (\boldsymbol{u} + \boldsymbol{v}) = \lambda \boldsymbol{u} + \lambda \boldsymbol{v}$

Vector Subspace

- i Non-empty \Rightarrow contains the zero vector
- ii Closed under vector addition $\Rightarrow u + v \in W$
- iii Closed under scalar multiplication $\Rightarrow \lambda(v) \in W$

Pointwise addition and scalar multiplication of continuous functions $f : \mathbb{R} \to \mathbb{R}$

- i (f+g)(x) := f(x) + g(x)
- ii $(\lambda f)(x) := \lambda(f(x))$

Basis of a Vector Space

An ordered set of vectors B is a basis of V if

 $i \ \mathcal{B} \subset V$

- ii $\operatorname{span}(\mathcal{B}) = V$
- iii \mathcal{B} is linearly independent

Linear Independence/Dependence

A set of vectors $A \subset V$ is said to be linearly dependent if for every nonempty finite subset of vectors $\{v_1, \ldots, v_k\} \subset A$, there exist scalars α_i , <u>not all zero</u>, such that

$$\alpha_i \boldsymbol{v}_i + \ldots + \alpha_k \boldsymbol{v}_k = \boldsymbol{0}$$

Otherwise, the set of vectors A is linearly independent

Linear Maps

A linear map $T: V \to W$ is defined as follows for all $k \in \mathbb{N}, \alpha_i \in \mathbb{R}$, and all vectors $x_i \in V$

$$T\left(\sum_{i}^{k} \alpha_{i} x_{i}\right) = \sum_{i}^{k} \alpha_{i} T(x_{i})$$

Equivalently, a linear map will satisfy the following:

i
$$T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$$

ii $T(\lambda \boldsymbol{u}) = \lambda T(\boldsymbol{u})$

Standard Matrix

Given a basis $\mathcal{B} = \{e_1, \ldots, e_n\}$, the standard matrix A of a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{bmatrix} \in M_{m \times n}(\mathbb{R})$$

Determinant Formulas

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

Inverse of a matrix $\in M_{2\times 2}(\mathbb{R})$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Dot Product

The dot product of two vectors can be defined in two primary ways:

1. Algebraic Definition:

Given two vectors $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ in an n-dimensional space, their dot product is the sum of the products of their corresponding components:

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

2. Geometric Definition:

The dot product of two vectors \boldsymbol{a} and \boldsymbol{b} can also be defined as the product of their magnitudes and the cosine of the angle θ between them:

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

where $\|a\|$ and $\|b\|$ are the magnitudes of vectors a and b, respectively.

Cross Product

The cross product of two vectors in three-dimensional space can be defined in three ways:

1. Determinant Definition:

Given two vectors $\boldsymbol{a} = (a_1, a_2, a_3)$ and $\boldsymbol{b} = (b_1, b_2, b_3)$, their cross product can be expressed using the determinant of a matrix:

$$oldsymbol{a} imes oldsymbol{b} = egin{bmatrix} i & j & k \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}$$

where $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors in the direction of the x, y, and z axes, respectively.

2. Magnitude and Direction Definition:

The magnitude of the cross product is given by the product of the magnitudes of the two vectors and the sine of the angle θ between them:

$$\|\boldsymbol{a} \times \boldsymbol{b}\| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta$$

The direction of $\boldsymbol{a} \times \boldsymbol{b}$ is perpendicular to the plane formed by \boldsymbol{a} and \boldsymbol{b} , following the right-hand rule.

3. Algebraic Definition:

Given two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^3$, their cross product $\boldsymbol{u} \times \boldsymbol{v}$ is the unique vector in \mathbb{R}^3 defined by the property:

$$(\boldsymbol{u} imes \boldsymbol{v}) \cdot \boldsymbol{w} = \det \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{bmatrix}$$

for all $\boldsymbol{w} \in \mathbb{R}^3$.

Properties of the Dot Product:

1.
$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$$
 (Commutativity).

- 2. $\lambda(\boldsymbol{u} \cdot \boldsymbol{v}) = (\lambda \boldsymbol{u}) \cdot \boldsymbol{v} = \boldsymbol{u} \cdot \lambda(\boldsymbol{v})$ (Compatibility with Scalars).
- 3. $\boldsymbol{u} \cdot (\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \cdot \boldsymbol{w}$ (Distribution).
- 4. $\boldsymbol{v} \cdot \boldsymbol{v} \geq 0$, equality only when $\boldsymbol{v} = \boldsymbol{0}$ (Positive Definite).
- 5. Cauchy-Schwarz Inequality: $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq ||\boldsymbol{u}|| ||\boldsymbol{v}||$.
- 6. Triangle Inequality: $\|\boldsymbol{u} + \boldsymbol{v}\| \leq \|\boldsymbol{u}\| + \|\boldsymbol{v}\|$.

Orthogonal/Orthonormal

A subset of vectors $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ is said to be orthogonal if

$$v_i \cdot v_j = 0$$
 for all $i \neq j$.

Furthermore, if $||v_i|| = 1$ for all $1 \leq i \leq k$, we say that the subset $S = \{v_1, v_2, \ldots, v_k\} \subseteq \mathbb{R}^n$ is orthonormal.

Projection of a u along a v

Assume $v \neq 0$. The projection of u along v is the vector

$$oldsymbol{u}_{\paralleloldsymbol{v}} = \left(rac{oldsymbol{u}\cdotoldsymbol{v}}{oldsymbol{v}\cdotoldsymbol{v}}
ight)oldsymbol{v} = \left(rac{oldsymbol{u}\cdotoldsymbol{v}}{\|oldsymbol{v}\|^2}
ight)oldsymbol{v} = \left(rac{oldsymbol{u}\cdotoldsymbol{v}}{\|oldsymbol{v}\|^2}
ight)\hat{e}_{oldsymbol{v}}$$

Properties of the Cross Product:

- 1. $\boldsymbol{u} \times \boldsymbol{v} = -(\boldsymbol{v} \times \boldsymbol{u})$ (Anti-commutativity).
- 2. $\boldsymbol{u} \times \boldsymbol{v}$ is orthogonal to both \boldsymbol{u} and \boldsymbol{v} .
- 3. The cross product $\times : \mathbb{R}^3 \to \mathbb{R}^3 \to \mathbb{R}^3$ is bilinear.
- 4. $\boldsymbol{u} \times \boldsymbol{v} = \boldsymbol{0}$ if and only if \boldsymbol{u} and \boldsymbol{v} are parallel.

where $\hat{e}_{\boldsymbol{v}}$ is the unit vector in the direction of \boldsymbol{v} .

This vector is sometimes denoted as $\text{proj}_{v}u$.

The scalar $\frac{u \cdot v}{\|v\|}$ is called the scalar component of u along v.

Parameterization of a Line

The line L in \mathbb{R}^n , passing through the point $P = (x_1, \ldots, x_n)$, in the direction of the vector $\boldsymbol{v} = \langle v_1, \ldots, v_n \rangle$, can be described by the vector-valued function $\boldsymbol{r}(t) \colon \mathbb{R} \to \mathbb{R}^n$ defined by

$$\boldsymbol{r}(t) = \boldsymbol{r}_0 + t\boldsymbol{v}$$

where \mathbf{r}_0 is the vector $\mathbf{r}_0 = \overrightarrow{OP} = \langle x_1, \dots, x_n \rangle$. We call $\mathbf{r}(t)$ the vector parametrization of L.

Parameterization of a Plane in \mathbb{R}^n

The plane P through the point $P = (x_1, \ldots, x_n)$ and determined by two non-parallel vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, can be described by the vector function $\boldsymbol{r}(s,t) \colon \mathbb{R}^2 \to \mathbb{R}^n$ defined by

$$\boldsymbol{r}(s,t) = \boldsymbol{r}_0 + s\boldsymbol{u} + t\boldsymbol{v}$$

where \mathbf{r}_0 is the vector $\mathbf{r}_0 = \overrightarrow{OP} = \langle x_1, \dots, x_n \rangle$. We call $\mathbf{r}(s, t)$ the parametrization of P.

Injective

Let $f: V \to W$ be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection) if the following holds: For all $v_1, v_2 \in V$, if $f(v_1) = f(v_2)$, then $v_1 = v_2$.

That is, a map f is injective if any element in the codomain of f is the image of at most one element in its domain.

Surjective

Let $f: V \to W$ be a linear map. We say that f is surjective or onto (or sometimes, f is a surjection) if the following holds: For all $w \in W$, there exists a $v \in V$ such that f(v) = w.

That is, any element in the codomain of f is the image of at least one element in its domain.

Bijective

Let $f: V \to W$ be a linear map. We say that f is bijective (or sometimes, f is a bijection) if f is both injective and surjective.

That is, any element in the codomain of f is the image of exactly one element in its domain. This implies that for all $w \in W$, there exists exactly one $v \in V$ such that f(v) = w.

Invertiblility

A linear transformation $T: V \to W$ is invertible if there exists a linear transformation $S: W \to V$ such that $S \circ T = \mathrm{id}_V$ and $T \circ S = \mathrm{id}_W$, where id_V and id_W are the identity maps on V and W, respectively.

Recall that linear transformations from \mathbb{R}^n to \mathbb{R}^m can be written as matrices. Thus, a matrix $A \in M_{n \times n}(\mathbb{R})$ is invertible if there exists a matrix $B \in M_{n \times n}(\mathbb{R})$ such that $AB = BA = I_n$. Here, B is called the inverse of A.

Isomorphism

A linear transformation $T: V \to W$ is an isomorphism of vector spaces if T satisfies any of the following equivalent conditions:

- 1. T is invertible.
- 2. T is bijective.

If $T: V \to W$ is an isomorphism, we say that V and W are isomorphic vector spaces.

We can check if a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$ is an isomorphism by checking if the determinant of the matrix representing the linear transformation is nonzero. This comes from the properties of matrix multiplication and the definition of invertibility.

Formula for a Plane

The plane P in \mathbb{R}^3 determined by a point $P_0 = (x_0, y_0, z_0)$ and a normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation:

$$\boldsymbol{n} \cdot \langle x, y, z \rangle = d$$

where we set $d = ax_0 + by_0 + cz_0$.

Hyperplane

Let $n \in V$, with $n \neq 0$. The hyperplane W normal to n (passing through the origin) is the subspace defined as

$$W = \{ \boldsymbol{v} \in V \mid \boldsymbol{n} \cdot \boldsymbol{v} = 0 \}$$

We say that \boldsymbol{n} is a normal vector of W.

Quadric Surfaces

1. Elliptic Cylinder: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$

2. Hyperbolic Cylinder: $\left(\frac{y}{b}\right)^2 - \left(\frac{x}{a}\right)^2 = 1$

3. Parabolic Cylinder: $y = ax^2$

4. Ellipsoid: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$

5. Hyperboloid One Sheet: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 + 1$

6. Hyperboloid Two Sheets: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 - 1$

7. Elliptic Paraboloid: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = z$

8.Hyperbolic Paraboloid: $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = z$

9. Cone (Elliptical): $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2$

Graphs

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, its graph is the following subset of \mathbb{R}^{n+1} :

$$\Gamma_f := \{ (x_1, \dots, x_n, f(x_1, \dots, x_n)) \} \subset \mathbb{R}^{n+1}$$

In other words, the graph is given by the equation

$$x_{n+1} = f(x_1, \dots, x_n)$$

in \mathbb{R}^{n+1} .

Traces

The trace in the plane P of a graph $\Gamma \subset \mathbb{R}^3$ is the intersection of Γ with P. That is,

 $\Gamma \cap P = \{ x \in \mathbb{R}^3 \mid x \in \Gamma \text{ and } x \in P \}$

Level Curves

The level curves (isoclines, contour map) of a function of two variables f(x, y) are the z-traces of the graph z = f(x, y).

Vanishing Locus

Given a multivariable function $G(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}$, its vanishing locus is the set of points

$$\{(x_1,\ldots,x_n) \mid G(x_1,\ldots,x_n) = 0\}$$

All quadric surfaces are the vanishing loci of the general quadratic equation

$$Q(x, y, z) = Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + ax + by + cz + d$$

Limits

Limit of Sequence Definition

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . We say that the sequence $\{a_n\}$ converges to the vector $L \in \mathbb{R}^k$ if the following holds:

For all $\varepsilon > 0$, there exists an M such that for all m > M, $\|\boldsymbol{a}_m - \boldsymbol{L}\| < \varepsilon$.

We say L is the *limit* of the sequence $\{a_n\}$. If no such L exists, we say that $\{a_n\}$ diverges.

Definition of a Ball

Let $P \in \mathbb{R}^n$. The open ball of radius ε around P, denoted $B_{\varepsilon}(P)$, is the set of points defined by

$$B_{\varepsilon}(P) := \{ \boldsymbol{x} \in \mathbb{R}^n \, | \, \| \boldsymbol{x} - \boldsymbol{P} \| < \varepsilon \}.$$

Subsequences

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . A subsequence of $\{a_n\}$ is a sequence $\{b_i\}$, where

$$b_i = a_{n_i}$$

such that $n_1 < n_2 < \cdots < n_i < \cdots$.

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . If $\{a_n\}$ has a subsequence $\{a_{n_i}\}$ that diverges, then $\{a_n\}$ diverges.

Delta-Epsilon Limit Definition

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ has the limit **b** at **a** if the following holds:

For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $\boldsymbol{x} \in \mathbb{R}^n$, $0 < \|\boldsymbol{x} - \boldsymbol{a}\| < \delta$ implies $\|f(\boldsymbol{x}) - \boldsymbol{b}\| < \varepsilon$.

Properties of Limits of a function from $\mathbb{R}^n \to \mathbb{R}$

Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be functions of *n* variables. Suppose that $\lim_{x \to P} f(x)$ and $\lim_{x \to P} g(x)$ exist. Then

a. Sum Law:

$$\lim_{\boldsymbol{x} \to \boldsymbol{P}} (f(\boldsymbol{x}) + g(\boldsymbol{x})) = \lim_{\boldsymbol{x} \to \boldsymbol{P}} f(\boldsymbol{x}) + \lim_{\boldsymbol{x} \to \boldsymbol{P}} g(\boldsymbol{x})$$

b. Scalar Multiple Law:

$$\lim_{\boldsymbol{x}\to\boldsymbol{P}}\lambda f(\boldsymbol{x}) = \lambda \lim_{\boldsymbol{x}\to\boldsymbol{P}}f(\boldsymbol{x})$$

c. Product Law:

$$\lim_{\boldsymbol{x}\to\boldsymbol{P}}(f(\boldsymbol{x})g(\boldsymbol{x})) = \left(\lim_{\boldsymbol{x}\to\boldsymbol{P}}f(\boldsymbol{x})\right)\left(\lim_{\boldsymbol{x}\to\boldsymbol{P}}g(\boldsymbol{x})\right)$$

d. Quotient Law: If $\lim_{\boldsymbol{x}\to\boldsymbol{P}} g(\boldsymbol{x}) \neq 0$,

$$\lim_{\boldsymbol{x}\to\boldsymbol{P}}\frac{f(\boldsymbol{x})}{g(\boldsymbol{x})} = \frac{\lim_{\boldsymbol{x}\to\boldsymbol{P}}f(\boldsymbol{x})}{\lim_{\boldsymbol{x}\to\boldsymbol{P}}g(\boldsymbol{x})}$$

Limit Point

Let $X \subset \mathbb{R}^n$. We say that a point $p \in \mathbb{R}^n$ is a *limit point* of X if there is a sequence $\{a_n\}$ contained inside X such that $\{a_n\}$ converges to p.

Paths to show a limit does not exist

Let $X \subset \mathbb{R}^n$, let $f : X \to \mathbb{R}^m$ be a function, and let a be a limit point of X. Then the following statements are equivalent:

a. $\lim_{\boldsymbol{x}\to\boldsymbol{a}} f(\boldsymbol{x}) = \boldsymbol{b}$

b. For every sequence $\{a_n\}$ converging to a (with $a_n \neq a$), the sequence $\{f(a_n)\}$ converges to b.

In other words, in order for a limit of a multivariable function to exist, it must yield the same value along all possible approaches.

Squeeze Theorem

Let $f(\mathbf{x})$, $g(\mathbf{x})$, and $h(\mathbf{x})$ be functions of n variables such that

$$\lim_{\boldsymbol{x}\to\boldsymbol{P}} f(\boldsymbol{x}) = L = \lim_{\boldsymbol{x}\to\boldsymbol{P}} h(\boldsymbol{x}).$$

If there exists $\delta > 0$ such that for all $\boldsymbol{x} \in B_{\delta}(\boldsymbol{P}) \setminus \{\boldsymbol{P}\}$, we have that

$$f(\boldsymbol{x}) \leq g(\boldsymbol{x}) \leq h(\boldsymbol{x}).$$

Limits using Polar Coordinates

Let $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables, which we can express in polar coordinates as $g(r, \theta) := f(r \cos(\theta), r \sin(\theta))$. Then

(x

$$\lim_{(y) \to (0,0)} f(x,y) = L$$

if and only if there exists $\delta > 0$ and a function $h : \mathbb{R} \to \mathbb{R}$ such that

1. If $0 < r < \delta$, then $|g(r, \theta) - L| \le h(r)$ for all θ , **AND**

2. $\lim_{r\to 0} h(r) = 0.$

Corollary 2.3.14. If $\lim_{r\to 0} g(r,\theta)$ depends on θ , then the value of the limit will differ for different straight line paths. Thus, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Derivatives

Limit Definition of the Derivative

A multivariable function $f : A \subset \mathbb{R}^m \to \mathbb{R}^n$ is *differentiable* at an interior point x_0 of A if there exists a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|f(\mathbf{x}_{\mathbf{0}}+\mathbf{h})-f(\mathbf{x}_{\mathbf{0}})-T(\mathbf{h})\|}{\|\mathbf{h}\|}=0.$$

The derivative of f at \mathbf{x}_0 is the linear transformation $Df(\mathbf{x}_0) := T$. By our characterization of linear transformations, $Df(\mathbf{x}_0) : \mathbb{R}^m \to \mathbb{R}^n$ corresponds to a matrix $[Df(\mathbf{x}_0)] \in M_{n \times m}(\mathbb{R})$.

Chain Rule

Let $f : \mathbb{R}^n \to \mathbb{R}^m$, and let $g : \mathbb{R}^m \to \mathbb{R}^k$ be multivariable functions such that f is differentiable at $x_0 \in \mathbb{R}^n$, and g is differentiable at $f(x_0) \in \mathbb{R}^m$. Then $g \circ f : \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at $x_0 \in \mathbb{R}^n$, and

$$D(g \circ f)(\boldsymbol{x_0}) = Dg(f(\boldsymbol{x_0})) \circ Df(\boldsymbol{x_0})$$

We can prove this using the definition of the derivative. However, since we know that the derivative can be computed in terms of the Jacobian, we equivalently have

In Coordinates: Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{x_0} \in \mathbb{R}^n$, and $g : \mathbb{R}^m \to \mathbb{R}^k$ is differentiable at $f(\mathbf{x_0}) \in \mathbb{R}^m$. Then

$$[J_{g \circ f}(\boldsymbol{x_0})] = [J_g(f(\boldsymbol{x_0}))][J_f(\boldsymbol{x_0})]$$

For Paths: Let $f(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, and let $\mathbf{r}(t) = \langle x_1(t), \ldots, x_n(t) \rangle : \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Then $f(\mathbf{r}(t)) : \mathbb{R} \to \mathbb{R}$ is a single-variable function, and the derivative of f at t_0 along the path $\mathbf{r}(t)$ is given by

$$\frac{d}{dt}f(\boldsymbol{r}(t_0)) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\boldsymbol{r}(t_0))x'_i(t_0)$$

where $x'_i(t_0)$ is the derivative of the *i*-th component of $\mathbf{r}(t)$ at t_0 . This measures the rate of change of f along the path $\mathbf{r}(t)$.

$$f(\mathbf{r}(t_0)) = \nabla f(\mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0)$$

The Jacobian

Let $f: A \subset \mathbb{R}^m \to \mathbb{R}^n$ be a multivariable function defined by $f^i: A \subset \mathbb{R}^m \to \mathbb{R}$:

$$f(\boldsymbol{x}) = \begin{bmatrix} f^1(\boldsymbol{x}) \\ \vdots \\ f^n(\boldsymbol{x}) \end{bmatrix}.$$

The Jacobian matrix of f at x_0 is

$$[J_f(\boldsymbol{x_0})] = \begin{bmatrix} D_1 f^1(\boldsymbol{x_0}) & D_2 f^1(\boldsymbol{x_0}) & \cdots & D_m f^1(\boldsymbol{x_0}) \\ D_1 f^2(\boldsymbol{x_0}) & D_2 f^2(\boldsymbol{x_0}) & \cdots & D_m f^2(\boldsymbol{x_0}) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f^n(\boldsymbol{x_0}) & D_2 f^n(\boldsymbol{x_0}) & \cdots & D_m f^n(\boldsymbol{x_0}) \end{bmatrix}$$

if the partial derivatives exist.

Directional Derivative

If $\mathbf{u} = \langle u_1, \dots, u_n \rangle$ is a unit vector in \mathbb{R}^n , then the directional derivative of a function f at the point $\mathbf{x}_0 \in \mathbb{R}^n$ in the direction of \mathbf{u} is defined as

$$D_{\mathbf{u}}f(\mathbf{x_0}) = u_1 \frac{\partial f}{\partial x_1}(\mathbf{x_0}) + \dots + u_n \frac{\partial f}{\partial x_n}(\mathbf{x_0}).$$

Gradient

If $f(x_1,\ldots,x_n)$ is a function of n variables, then the gradient of f is the vector-valued function given by

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle.$$

That is, ∇f is the transpose of the matrix of partial derivatives of f,

$$\nabla f = \left[D(f(\boldsymbol{x_0})) \right]^{\top},$$

where $[A]^{\top}$ indicates the transpose matrix.

Thinking of z as the height of z = f(x, y), the gradient ∇f points in the direction of steepest ascent. The opposite of the gradient, $-\nabla f$, points in the direction of steepest descent.

Linear Approximation

If $f: A \subset \mathbb{R}^m \to \mathbb{R}$ is differentiable at a point $\boldsymbol{a} = (a_1, \ldots, a_n)$, and $\boldsymbol{x} = (x_1, \ldots, x_n)$ is close to \boldsymbol{a} , then

$$f(\boldsymbol{x}) \approx f(\boldsymbol{a}) + \begin{bmatrix} D_1 f(\boldsymbol{a}) & D_2 f(\boldsymbol{a}) & \cdots & D_n f(\boldsymbol{a}) \end{bmatrix} (\boldsymbol{x} - \boldsymbol{a})$$
$$= f(\boldsymbol{a}) + \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(\boldsymbol{a}) \right) (x_i - a_i).$$

Critical Point

A point $P \in \mathbb{R}^n$ is said to be a *critical point* of a function $f : \mathbb{R}^n \to \mathbb{R}$ if either

a. Df(P) = 0, **OR**

b. $Df(\mathbf{P})$ does not exist.

Hessian Matrix

The Hessian matrix of $f : \mathbb{R}^n \to \mathbb{R}$ at x_0 is

$$[H_f(\mathbf{x_0})] = \begin{bmatrix} D_1 D_1 f(\mathbf{x_0}) & D_2 D_1 f(\mathbf{x_0}) & \cdots & D_n D_1 f(\mathbf{x_0}) \\ D_1 D_2 f(\mathbf{x_0}) & D_2 D_2 f(\mathbf{x_0}) & \cdots & D_n D_2 f(\mathbf{x_0}) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 D_n f(\mathbf{x_0}) & D_2 D_n f(\mathbf{x_0}) & \cdots & D_n D_n f(\mathbf{x_0}) \end{bmatrix},$$

where $D_i D_j f(\mathbf{x_0})$ denotes the second partial derivative of f with respect to x_i and then x_j at $\mathbf{x_0}$.

Clairaut's Theorem.

Let $f : \mathbb{R}^n \to \mathbb{R}$. Suppose that $D_i f$, $D_j f$, and $D_i D_j f$ exist and are continuous on an open disk $D \subset \mathbb{R}^n$. Then $D_j D_i f$ exists on D, and moreover, $D_i D_j f = D_j D_i f$ on the disk D.

Second Derivative Test

Let $\mathbf{x}_0 \subset U$ be a critical point of $f(x, y) : U \to \mathbb{R}$, and suppose that f is in $C^2(U)$. Let us write $D = \det[H_f(\mathbf{x}_0)]$.

a. If D > 0 and $f_{xx}(x_0) > 0$, then there is a local minimum at x_0 .

b. If D > 0 and $f_{xx}(x_0) < 0$, then there is a local maximum at x_0 .

c. If D < 0, then f has a saddle point at x_0 .

d. If D = 0 or does not exist, then the test is inconclusive.

Convex Subset

A subset $A \subset \mathbb{R}^n$ is said to be a convex subset of \mathbb{R}^n if it contains the line segment joining any two points of A. That is, for all $a, b \in A$, and for all $t \in [0, 1]$, then $a + t(b - a) \in A$.

Bounded

A subset $D \subset \mathbb{R}^n$ is *bounded* if there exists some r > 0 such that

$$D \subset B_r(\mathbf{0}).$$

Boundary Point

A point $x_0 \in \mathbb{R}^n$ is a boundary point of $D \subset \mathbb{R}^n$ if: for all $\varepsilon > 0$,

a. $B_{\varepsilon}(\boldsymbol{x_0}) \cap D$ is non-empty, and

b. $B_{\varepsilon}(\boldsymbol{x_0}) \cap D^c$ is non-empty,

where D^c is the complement of D in \mathbb{R}^n .

A subset $D \subset \mathbb{R}^n$ is *closed* if it contains all of its boundary points.

Langrange Multipliers

Assume that f(x, y) and g(x, y) are differentiable functions. If

a. f(x,y) has a local maximum or minimum subject to the constraint g(x,y) = 0 at a point (a,b), AND

b. $\nabla g(a,b) \neq 0$

then there is a scalar λ such that

$$\nabla f(a,b) = \lambda \nabla g(a,b).$$

We can use the Lagrange equations

$$f_x(a,b) = \lambda g_x(a,b)$$

and

$$f_y(a,b) = \lambda g_y(a,b).$$

Global Max/Min

If D is a closed and bounded subset of \mathbb{R}^n , and f is a continuous function on D, then f has a global maximum and a global minimum in D. That is, there exists an $M \in D$ and an $m \in D$ such that

$$f(m) \le f(x) \le f(M)$$

for all $x \in D$.

Frenet Frame Formulas

$$T(t) = \frac{1}{||\mathbf{r}'(t)||} \mathbf{r}'(t)$$
$$\mathbf{N}(t) = \frac{1}{||\mathbf{T}'(t)||} \mathbf{T}'(t)$$
$$\mathbf{B} = \mathbf{T} \times \mathbf{N}$$
$$\mathbf{B}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}$$
$$\mathbf{N} = \mathbf{B} \times \mathbf{T}$$
$$\kappa(t) = \frac{1}{||\mathbf{r}'(t)||} ||\mathbf{T}'(t)||$$
$$\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$
$$\kappa(t) = \frac{1}{R}$$