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Linear Algebra

Vector Space Axioms

i Additive Associativity: u+ (v +w) = (u+ v) +w

ii Additive Identity: v + 0 = 0+ v = v

iii Additive Inverse: For all v ∈ V there exists a w ∈ V such that v +w = 0

iv Additive Commutativity: u+ v = v + u

v Scalar Associativity: λ (αv) = (λα)v

vi Scalar Identity: 1v = v

vii Distribution of Scalar Addition: (λ+ α)u = λu+ αu

viii Distribution of Vector Addition: λ (u+ v) = λu+ λv

Vector Subspace

i Non-empty ⇒ contains the zero vector

ii Closed under vector addition ⇒ u+ v ∈ W

iii Closed under scalar multiplication ⇒ λ(v) ∈ W

Pointwise addition and scalar multiplication of continuous functions f : R → R

i (f + g)(x) := f(x) + g(x)

ii (λf)(x) := λ(f(x))

Basis of a Vector Space
An ordered set of vectors B is a basis of V if

i B ⊂ V

ii span(B) = V

iii B is linearly independent
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Linear Independence/Dependence
A set of vectors A ⊂ V is said to be linearly dependent if for every nonempty finite subset of vectors

{v1, . . . ,vk} ⊂ A, there exist scalars αi, not all zero, such that

αivi + . . .+ αkvk = 0

Otherwise, the set of vectors A is linearly independent

Linear Maps
A linear map T : V → W is defined as follows for all k ∈ N, αi ∈ R, and all vectors xi ∈ V

T

(
k∑
i

αixi

)
=

k∑
i

αiT (xi)

Equivalently, a linear map will satisfy the following:

i T (u+ v) = T (u) + T (v)

ii T (λu) = λT (u)

Standard Matrix
Given a basis B = {e1, . . . , en}, the standard matrix A of a linear map T : Rn → Rm is given by

[
A
]
=

 | | |
T (e1) T (e2) · · · T (en)

| | |

 ∈ Mm×n(R)

Determinant Formulas ∣∣∣∣a b
c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣
Inverse of a matrix ∈ M2×2(R) [

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]

Dot Product
The dot product of two vectors can be defined in two primary ways:

1. Algebraic Definition:
Given two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in an n-dimensional space, their dot
product is the sum of the products of their corresponding components:

a · b = a1b1 + a2b2 + . . .+ anbn

2. Geometric Definition:
The dot product of two vectors a and b can also be defined as the product of their magnitudes and
the cosine of the angle θ between them:

a · b = ∥a∥∥b∥ cos θ
where ∥a∥ and ∥b∥ are the magnitudes of vectors a and b, respectively.
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Cross Product
The cross product of two vectors in three-dimensional space can be defined in three ways:

1. Determinant Definition:
Given two vectors a = (a1, a2, a3) and b = (b1, b2, b3), their cross product can be expressed using the
determinant of a matrix:

a× b =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
where î, ĵ, k̂ are the unit vectors in the direction of the x, y, and z axes, respectively.

2. Magnitude and Direction Definition:
The magnitude of the cross product is given by the product of the magnitudes of the two vectors and
the sine of the angle θ between them:

∥a× b∥ = ∥a∥∥b∥ sin θ

The direction of a× b is perpendicular to the plane formed by a and b, following the right-hand rule.

3. Algebraic Definition:
Given two vectors u,v ∈ R3, their cross product u × v is the unique vector in R3 defined by the
property:

(u× v) ·w = det

uv
w


for all w ∈ R3.

Properties of the Dot Product:

1. u · v = v · u (Commutativity).

2. λ(u ·v) = (λu) ·v = u ·λ(v) (Compatibility with
Scalars).

3. u · (v +w) = u · v + u ·w (Distribution).

4. v · v ≥ 0, equality only when v = 0 (Positive
Definite).

5. Cauchy-Schwarz Inequality: |u · v| ≤ ∥u∥∥v∥.

6. Triangle Inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Properties of the Cross Product:

1. u× v = −(v × u) (Anti-commutativity).

2. u× v is orthogonal to both u and v.

3. The cross product × : R3 → R3 → R3 is bilinear.

4. u× v = 0 if and only if u and v are parallel.

Orthogonal/Orthonormal
A subset of vectors S = {v1, v2, . . . , vk} ⊆ Rn is said to be orthogonal if

vi · vj = 0 for all i ̸= j.

Furthermore, if ∥vi∥ = 1 for all 1 ≤ i ≤ k, we say that the subset S = {v1, v2, . . . , vk} ⊆ Rn is
orthonormal.

Projection of a u along a v
Assume v ̸= 0. The projection of u along v is the vector

u∥v =
(u · v
v · v

)
v =

(
u · v
∥v∥2

)
v =

(
u · v
∥v∥

)
êv
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where êv is the unit vector in the direction of v.
This vector is sometimes denoted as projvu.
The scalar u·v

∥v∥ is called the scalar component of u along v.

Parameterization of a Line
The line L in Rn, passing through the point P = (x1, . . . , xn), in the direction of the vector v =

⟨v1, . . . , vn⟩, can be described by the vector-valued function r(t) : R → Rn defined by

r(t) = r0 + tv

where r0 is the vector r0 =
−−→
OP = ⟨x1, . . . , xn⟩. We call r(t) the vector parametrization of L.

Parameterization of a Plane in Rn

The plane P through the point P = (x1, . . . , xn) and determined by two non-parallel vectors u,v ∈ Rn,
can be described by the vector function r(s, t) : R2 → Rn defined by

r(s, t) = r0 + su+ tv

where r0 is the vector r0 =
−−→
OP = ⟨x1, . . . , xn⟩. We call r(s, t) the parametrization of P .

Injective
Let f : V → W be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection)

if the following holds: For all v1,v2 ∈ V , if f(v1) = f(v2), then v1 = v2.
That is, a map f is injective if any element in the codomain of f is the image of at most one element in

its domain.

V W

v1

v2

f(v1)

f(v2)

f(v3)

f(v4)

Surjective
Let f : V → W be a linear map. We say that f is surjective or onto (or sometimes, f is a surjection) if

the following holds: For all w ∈ W , there exists a v ∈ V such that f(v) = w.
That is, any element in the codomain of f is the image of at least one element in its domain.
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V W

v1

v2

v3

f(v1)

f(v2)

Bijective
Let f : V → W be a linear map. We say that f is bijective (or sometimes, f is a bijection) if f is both

injective and surjective.
That is, any element in the codomain of f is the image of exactly one element in its domain. This implies

that for all w ∈ W , there exists exactly one v ∈ V such that f(v) = w.

V W

v1

v2

v3

f(v1)

f(v2)

f(v3)

Invertiblility
A linear transformation T : V → W is invertible if there exists a linear transformation S : W → V such

that S ◦ T = idV and T ◦ S = idW , where idV and idW are the identity maps on V and W , respectively.
Recall that linear transformations from Rn to Rm can be written as matrices. Thus, a matrix A ∈

Mn×n(R) is invertible if there exists a matrix B ∈ Mn×n(R) such that AB = BA = In. Here, B is called
the inverse of A.

Isomorphism
A linear transformation T : V → W is an isomorphism of vector spaces if T satisfies any of the following

equivalent conditions:

1. T is invertible.

2. T is bijective.

If T : V → W is an isomorphism, we say that V and W are isomorphic vector spaces.
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We can check if a linear transformation from Rn → Rm is an isomorphism by checking if the determinant
of the matrix representing the linear transformation is nonzero. This comes from the properties of matrix
multiplication and the definition of invertibility.

Formula for a Plane
The plane P in R3 determined by a point P0 = (x0, y0, z0) and a normal vector n = ⟨a, b, c⟩ is described

by the equation:
n · ⟨x, y, z⟩ = d

where we set d = ax0 + by0 + cz0.

Hyperplane
Let n ∈ V , with n ̸= 0. The hyperplane W normal to n (passing through the origin) is the subspace

defined as
W = {v ∈ V | n · v = 0}

We say that n is a normal vector of W .

Quadric Surfaces

1. Elliptic Cylinder:
(
x
a

)2
+
(
y
b

)2
= 1

−2

0

2−2
−1

0
1

2

−1

−0.5

0

0.5

1

x
y

z

2. Hyperbolic Cylinder:
(
y
b

)2 − (xa)2 = 1
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−2
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2
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3. Parabolic Cylinder: y = ax2

−5

0

5 −4
−2

0
2

4

0

10

20
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y

z

4. Ellipsoid:
(
x
a

)2
+
(
y
b

)2
+
(
z
c

)2
= 1
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−1
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5. Hyperboloid One Sheet:
(
x
a

)2
+
(
y
b

)2
=
(
z
c

)2
+ 1

−2

0

2

−2
0

2

−2

0

2

x

y

z

6. Hyperboloid Two Sheets:
(
x
a

)2
+
(
y
b

)2
=
(
z
c

)2 − 1
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7. Elliptic Paraboloid:
(
x
a

)2
+
(
y
b

)2
= z
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2

−2
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0
1

2

0

2

4

x

y

z

8.Hyperbolic Paraboloid:
(
x
a

)2 − (yb )2 = z

9



−2

−1

0

1

2

−2
−1

0
1

2

−4

−2

0

2

4

x

y

z

9. Cone (Elliptical):
(
x
a
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b
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c
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Graphs
Given a function f : Rn → R, its graph is the following subset of Rn+1:

Γf := {(x1, . . . , xn, f(x1, . . . , xn))} ⊂ Rn+1

In other words, the graph is given by the equation

xn+1 = f(x1, . . . , xn)

in Rn+1.

Traces
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The trace in the plane P of a graph Γ ⊂ R3 is the intersection of Γ with P . That is,

Γ ∩ P = {x ∈ R3 | x ∈ Γ and x ∈ P}

Level Curves
The level curves (isoclines, contour map) of a function of two variables f(x, y) are the z-traces of the

graph z = f(x, y).

Vanishing Locus
Given a multivariable function G(x1, . . . , xn) : Rn → R, its vanishing locus is the set of points

{(x1, . . . , xn) | G(x1, . . . , xn) = 0}

All quadric surfaces are the vanishing loci of the general quadratic equation

Q(x, y, z) = Ax2 +By2 + Cz2 +Dxy + Exz + Fyz + ax+ by + cz + d

Limits

Limit of Sequence Definition
Let {an} be a sequence of vectors in Rk. We say that the sequence {an} converges to the vector L ∈ Rk

if the following holds:

For all ε > 0, there exists an M such that for all m > M , ∥am −L∥ < ε.

We say L is the limit of the sequence {an}. If no such L exists, we say that {an} diverges.

Definition of a Ball
Let P ∈ Rn. The open ball of radius ε around P , denoted Bε(P ), is the set of points defined by

Bε(P ) := {x ∈ Rn | ∥x− P ∥ < ε}.

Subsequences
Let {an} be a sequence of vectors in Rk. A subsequence of {an} is a sequence {bi}, where

bi = ani

such that n1 < n2 < · · · < ni < · · · .
Let {an} be a sequence of vectors in Rk. If {an} has a subsequence {ani} that diverges, then {an}

diverges.

Delta-Epsilon Limit Definition
A function f : Rn → Rm has the limit b at a if the following holds:

For all ε > 0, there exists δ > 0 such that for all x ∈ Rn,
0 < ∥x− a∥ < δ implies ∥f(x)− b∥ < ε.

Properties of Limits of a function from Rn → R
Let f, g : Rn → R be functions of n variables. Suppose that limx→P f(x) and limx→P g(x) exist. Then

a. Sum Law:
lim
x→P

(f(x) + g(x)) = lim
x→P

f(x) + lim
x→P

g(x)
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b. Scalar Multiple Law:
lim
x→P

λf(x) = λ lim
x→P

f(x)

c. Product Law:
lim
x→P

(f(x)g(x)) =
(
lim
x→P

f(x)
)(

lim
x→P

g(x)
)

d. Quotient Law: If limx→P g(x) ̸= 0,

lim
x→P

f(x)

g(x)
=

limx→P f(x)

limx→P g(x)

Limit Point
Let X ⊂ Rn. We say that a point p ∈ Rn is a limit point of X if there is a sequence {an} contained

inside X such that {an} converges to p.

Paths to show a limit does not exist
Let X ⊂ Rn, let f : X → Rm be a function, and let a be a limit point of X. Then the following

statements are equivalent:

a. limx→a f(x) = b

b. For every sequence {an} converging to a (with an ̸= a), the sequence {f(an)} converges to b.

In other words, in order for a limit of a multivariable function to exist, it must yield the same value along
all possible approaches.

Squeeze Theorem
Let f(x), g(x), and h(x) be functions of n variables such that

lim
x→P

f(x) = L = lim
x→P

h(x).

If there exists δ > 0 such that for all x ∈ Bδ(P ) \ {P }, we have that

f(x) ≤ g(x) ≤ h(x).

Limits using Polar Coordinates
Let f(x, y) : R2 → R be a function of two variables, which we can express in polar coordinates as

g(r, θ) := f(r cos(θ), r sin(θ)). Then
lim

(x,y)→(0,0)
f(x, y) = L

if and only if there exists δ > 0 and a function h : R → R such that

1. If 0 < r < δ, then |g(r, θ)− L| ≤ h(r) for all θ, AND

2. limr→0 h(r) = 0.

Corollary 2.3.14. If limr→0 g(r, θ) depends on θ, then the value of the limit will differ for different
straight line paths. Thus, lim(x,y)→(0,0) f(x, y) does not exist.
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Derivatives

Limit Definition of the Derivative
A multivariable function f : A ⊂ Rm → Rn is differentiable at an interior point x0 of A if there exists a

linear transformation T : Rm → Rn such that

lim
h→0

∥f(x0 + h)− f(x0)− T (h)∥
∥h∥ = 0.

The derivative of f at x0 is the linear transformation Df(x0) := T . By our characterization of linear
transformations, Df(x0) : Rm → Rn corresponds to a matrix [Df(x0)] ∈ Mn×m(R).

Chain Rule
Let f : Rn → Rm, and let g : Rm → Rk be multivariable functions such that f is differentiable at

x0 ∈ Rn, and g is differentiable at f(x0) ∈ Rm. Then g ◦ f : Rn → Rk is differentiable at x0 ∈ Rn, and

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0)

We can prove this using the definition of the derivative. However, since we know that the derivative can be
computed in terms of the Jacobian, we equivalently have

In Coordinates: Suppose that f : Rn → Rm is differentiable at x0 ∈ Rn, and g : Rm → Rk is
differentiable at f(x0) ∈ Rm. Then

[Jg◦f (x0)] = [Jg(f(x0))][Jf (x0)]

For Paths: Let f(x1, . . . , xn) : Rn → R be a differentiable function, and let r(t) = ⟨x1(t), . . . , xn(t)⟩ :
R → Rn be a vector-valued function. Then f(r(t)) : R → R is a single-variable function, and the derivative
of f at t0 along the path r(t) is given by

d

dt
f(r(t0)) =

n∑
i=1

∂f

∂xi
(r(t0))x

′
i(t0)

where x′
i(t0) is the derivative of the i-th component of r(t) at t0. This measures the rate of change of f

along the path r(t).

f(r(t0)) = ∇f(r(t0)) · r′(t0)

The Jacobian
Let f : A ⊂ Rm → Rn be a multivariable function defined by f i : A ⊂ Rm → R:

f(x) =

f
1(x)
...

fn(x)

 .

The Jacobian matrix of f at x0 is

[Jf (x0)] =


D1f

1(x0) D2f
1(x0) · · · Dmf1(x0)

D1f
2(x0) D2f

2(x0) · · · Dmf2(x0)
...

...
. . .

...
D1f

n(x0) D2f
n(x0) · · · Dmfn(x0)


if the partial derivatives exist.

Directional Derivative
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If u = ⟨u1, . . . , un⟩ is a unit vector in Rn, then the directional derivative of a function f at the point
x0 ∈ Rn in the direction of u is defined as

Duf(x0) = u1
∂f

∂x1
(x0) + · · ·+ un

∂f

∂xn
(x0).

Gradient
If f(x1, . . . , xn) is a function of n variables, then the gradient of f is the vector-valued function given by

∇f =

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

That is, ∇f is the transpose of the matrix of partial derivatives of f ,

∇f =
[
D(f (x0))

]⊤
,

where [A]⊤ indicates the transpose matrix.
Thinking of z as the height of z = f(x, y), the gradient ∇f points in the direction of steepest ascent.
The opposite of the gradient, −∇f , points in the direction of steepest descent.

Linear Approximation
If f : A ⊂ Rm → R is differentiable at a point a = (a1, . . . , an), and x = (x1, . . . , xn) is close to a, then

f(x) ≈ f(a) +
[
D1f(a) D2f(a) · · · Dnf(a)

]
(x− a)

= f(a) +

n∑
i=1

(
∂f

∂xi
(a)

)
(xi − ai).

Critical Point
A point P ∈ Rn is said to be a critical point of a function f : Rn → R if either

a. Df(P ) = 0, OR

b. Df(P ) does not exist.

Hessian Matrix
The Hessian matrix of f : Rn → R at x0 is

[Hf (x0)] =


D1D1f(x0) D2D1f(x0) · · · DnD1f(x0)
D1D2f(x0) D2D2f(x0) · · · DnD2f(x0)

...
...

. . .
...

D1Dnf(x0) D2Dnf(x0) · · · DnDnf(x0)

 ,

where DiDjf(x0) denotes the second partial derivative of f with respect to xi and then xj at x0.

Clairaut’s Theorem.
Let f : Rn → R. Suppose that Dif , Djf , and DiDjf exist and are continuous on an open disk D ⊂ Rn.

Then DjDif exists on D, and moreover, DiDjf = DjDif on the disk D.

Second Derivative Test
Let x0 ⊂ U be a critical point of f(x, y) : U → R, and suppose that f is in C2(U). Let us write

D = det[Hf (x0)].

a. If D > 0 and fxx(x0) > 0, then there is a local minimum at x0.
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b. If D > 0 and fxx(x0) < 0, then there is a local maximum at x0.

c. If D < 0, then f has a saddle point at x0.

d. If D = 0 or does not exist, then the test is inconclusive.

Convex Subset
A subset A ⊂ Rn is said to be a convex subset of Rn if it contains the line segment joining any two points

of A. That is, for all a, b ∈ A, and for all t ∈ [0, 1], then a+ t(b− a) ∈ A.

Bounded
A subset D ⊂ Rn is bounded if there exists some r > 0 such that

D ⊂ Br(0).

Boundary Point
A point x0 ∈ Rn is a boundary point of D ⊂ Rn if: for all ε > 0,

a. Bε(x0) ∩D is non-empty, and

b. Bε(x0) ∩Dc is non-empty,

where Dc is the complement of D in Rn.
A subset D ⊂ Rn is closed if it contains all of its boundary points.

Langrange Multipliers
Assume that f(x, y) and g(x, y) are differentiable functions. If

a. f(x, y) has a local maximum or minimum subject to the constraint g(x, y) = 0 at a point (a, b), AND

b. ∇g(a, b) ̸= 0

then there is a scalar λ such that
∇f(a, b) = λ∇g(a, b).

We can use the Lagrange equations
fx(a, b) = λgx(a, b)

and
fy(a, b) = λgy(a, b).

Global Max/Min
If D is a closed and bounded subset of Rn, and f is a continuous function on D, then f has a global

maximum and a global minimum in D. That is, there exists an M ∈ D and an m ∈ D such that

f(m) ≤ f(x) ≤ f(M)

for all x ∈ D.
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Frenet Frame Formulas

T (t) =
1

||r′(t)||r
′(t)

N(t) =
1

||T ′(t)||T
′(t)

B = T ×N

B(t) =
r′(t)× r′′(t)

||r′(t)× r′′(t)||

N = B × T

κ(t) =
1

||r′(t)|| ||T
′(t)||

κ(t) =
||r′(t)× r′′(t)||

||r′(t)||3

κ(t) =
1

R
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