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Linear Algebra
Vector Space Axioms
i Additive Associativity: w4+ (v + w) = (u +v) + w
ii Additive Identity: v4+0=0+v = v
iii Additive Inverse: For all v € V there exists a w € V such that v +w =0
iv Additive Commutativity: v +v =v + u
v Scalar Associativity: A (av) = (Aa)v
vi Scalar Identity: 1lv = v
vii Distribution of Scalar Addition: (A + a)u = Au + au

viii Distribution of Vector Addition: A (u + v) = Au + Av

Vector Subspace
i Non-empty = contains the zero vector
ii Closed under vector addition = u+v € W

iii Closed under scalar multiplication = A(v) € W

Pointwise addition and scalar multiplication of continuous functions f: R — R

L (f+9)(x):= f(z) +9(x)
i (Af)(x) == A(f(2))
Basis of a Vector Space
An ordered set of vectors B is a basis of V if
iBCV
ii span(B) =V

iii B is linearly independent



Linear Independence/Dependence
A set of vectors A C 'V is said to be linearly dependent if for every nonempty finite subset of vectors
{v1,..., v} C A, there exist scalars a;, not all zero, such that

o+ ...+ apv =0

Otherwise, the set of vectors A is linearly independent

Linear Maps
A linear map T : V — W is defined as follows for all £ € N, «; € R, and all vectors x; € V

k k
T <Z aixi> = ZO&Z'T(JLL')
Equivalently, a linear map will satisfy the following:
i T(u+v)=T(u)+T(v)
it T(Au) = AT (u)

Standard Matrix
Given a basis B = {e1,...,en}, the standard matrix A of a linear map 7' : R" — R™ is given by

[A] = |T(er) T(e2) -+ Tlen)| € Mypxn(R)

Determinant Formulas

a b
d’ =ad — bc
a1 b1 o
_ bg C2 as C as bg
as by ca| =a; by cs — by a + 1 a5 bs

az bz c3

Inverse of a matrix € Msy2(R)

Dot Product
The dot product of two vectors can be defined in two primary ways:

1. Algebraic Definition:
Given two vectors a = (a1, as,...,a,) and b = (b1,bs,...,b,) in an n-dimensional space, their dot
product is the sum of the products of their corresponding components:

a-b=aib; +azby+ ...+ ayb,

2. Geometric Definition:
The dot product of two vectors a and b can also be defined as the product of their magnitudes and
the cosine of the angle 6 between them:

a-b=|af|bl cos b

where ||a|| and ||b|| are the magnitudes of vectors a and b, respectively.



Cross Product
The cross product of two vectors in three-dimensional space can be defined in three ways:

1. Determinant Definition:
Given two vectors a = (a1, as,a3) and b = (by, by, bs), their cross product can be expressed using the
determinant of a matrix:

A I
axb=la; ax a3
by by b3

where i,j,fs are the unit vectors in the direction of the x, y, and z axes, respectively.

2. Magnitude and Direction Definition:
The magnitude of the cross product is given by the product of the magnitudes of the two vectors and
the sine of the angle 6 between them:

la x bl| = [|lall[|b] sin ¢
The direction of a x b is perpendicular to the plane formed by a and b, following the right-hand rule.

3. Algebraic Definition:
Given two vectors u,v € R3, their cross product u x v is the unique vector in R? defined by the

property:
u
(uxv) - w=det |v
w
for all w € R3.
Properties of the Dot Product: Properties of the Cross Product:
1. w-v =v-u (Commutativity). 1. u x v =—(v x u) (Anti-commutativity).

2. Mu-v) = (Au)-v = u-A(v) (Compatibility with 2. w X v is orthogonal to both u and v.

Scalars). o
3. The cross product x : R? = R3 — R? is bilinear.

3. u- (v+w)=u-v+u-w (Distribution). . ]
4. w x v = 0 if and only if w and v are parallel.

4. v-v > 0, equality only when v = 0 (Positive
Definite).

5. Cauchy-Schwarz Inequality: |u - v| < ||ul|||v].

6. Triangle Inequality: ||u + v| < |ul| + ||v].

Orthogonal/Orthonormal
A subset of vectors S = {v1,vs,...,vr} C R” is said to be orthogonal if

v;-v; =0 forall i # j.

Furthermore, if |Jv;|| = 1 for all 1 < ¢ < k, we say that the subset S = {v1,vq,...,vp} C R" is
orthonormal.

Projection of a u along a v
Assume v # 0. The projection of u along v is the vector



where é, is the unit vector in the direction of v.
This vector is sometimes denoted as proj,u.

u-v

The scalar ol is called the scalar component of u along v.

Parameterization of a Line
The line L in R™, passing through the point P = (z1,...,2,), in the direction of the vector v =
(v1,...,vp), can be described by the vector-valued function 7(¢): R — R™ defined by

r(t) = 1o + tv
where 7 is the vector rq = O? = (21,...,2pn). We call () the vector parametrization of L.

Parameterization of a Plane in R”
The plane P through the point P = (z1,...,z,) and determined by two non-parallel vectors u,v € R",
can be described by the vector function r(s,t): R? — R™ defined by

r(s,t) =ro+ su+ tv

where 7 is the vector r¢ = 0P = (x1,...,2pn). We call r(s,t) the parametrization of P.

Injective

Let f:V — W be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection)
if the following holds: For all vi,vy € V, if f(v1) = f(v2), then vy = vs.

That is, a map f is injective if any element in the codomain of f is the image of at most one element in
its domain.

V w

V1

V2

Surjective

Let f:V — W be a linear map. We say that f is surjective or onto (or sometimes, f is a surjection) if
the following holds: For all w € W, there exists a v € V such that f(v) = w.

That is, any element in the codomain of f is the image of at least one element in its domain.



-

Bijective

Let f : V — W be a linear map. We say that f is bijective (or sometimes, f is a bijection) if f is both
injective and surjective.

That is, any element in the codomain of f is the image of exactly one element in its domain. This implies
that for all w € W, there exists exactly one v € V such that f(v) = w.

v w
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Invertiblility
A linear transformation 7' : V' — W is invertible if there exists a linear transformation S : W — V such
that SoT =idy and T o S = idyy, where idy and idy are the identity maps on V and W, respectively.
Recall that linear transformations from R"™ to R™ can be written as matrices. Thus, a matrix A €
M, «n(R) is invertible if there exists a matrix B € M, x,(R) such that AB = BA = I,,. Here, B is called
the inverse of A.

Isomorphism
A linear transformation 7" : V — W is an isomorphism of vector spaces if T satisfies any of the following
equivalent conditions:

1. T is invertible.
2. T is bijective.

If T:V — W is an isomorphism, we say that V and W are isomorphic vector spaces.



We can check if a linear transformation from R™ — R™ is an isomorphism by checking if the determinant
of the matrix representing the linear transformation is nonzero. This comes from the properties of matrix
multiplication and the definition of invertibility.

Formula for a Plane
The plane P in R?® determined by a point Py = (20, %0, 20) and a normal vector m = (a, b, c) is described
by the equation:
n-{(x,y,z) =d

where we set d = axg + byy + czp.
Hyperplane

Let n € V, with n # 0. The hyperplane W normal to n (passing through the origin) is the subspace
defined as

W={veV|n -v=0}

We say that n is a normal vector of W.

Quadric Surfaces

1. Elliptic Cylinder: (2)* + (£)* =1
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3. Parabolic Cylinder:

4. Ellipsoid: (f)2 + (

>









Graphs
Given a function f: R™ — R, its graph is the following subset of R™+!:

Ff = {(x]_,...7$n,f(x17""xn))} - R

In other words, the graph is given by the equation

Tn+1 = f(l‘1, e ,:cn)

in R*HL,

Traces
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The trace in the plane P of a graph I' C R is the intersection of I' with P. That is,

I'NP={zcR®|zcT and z € P}

Level Curves
The level curves (isoclines, contour map) of a function of two variables f(z,y) are the z-traces of the

graph z = f(z,y).

Vanishing Locus
Given a multivariable function G(x1,...,x,) : R™ — R, its vanishing locus is the set of points

{(z1,...,2,) | G(21,...,2,) =0}
All quadric surfaces are the vanishing loci of the general quadratic equation

Q(z,y,2) = Az® + By? + C2*> + Doy + Exz + Fyz +ax +by + cz +d

Limits

Limit of Sequence Definition
Let {an} be a sequence of vectors in R¥. We say that the sequence {a,,} converges to the vector L € R¥
if the following holds:

For all € > 0, there exists an M such that for all m > M, ||a,,, — L|| < e.

We say L is the limit of the sequence {an}. If no such L exists, we say that {a,} diverges.

Definition of a Ball
Let P € R™. The open ball of radius ¢ around P, denoted B.(P), is the set of points defined by

B.(P):={z ¢ R" |||z — P| < ¢}.

Subsequences
Let {a,} be a sequence of vectors in R¥. A subsequence of {a,,} is a sequence {b;}, where

bi = Qn,

such that nq < no < -+ <my < ---.
Let {a,} be a sequence of vectors in R*. If {a,} has a subsequence {a,,} that diverges, then {a,}
diverges.

Delta-Epsilon Limit Definition
A function f: R™ — R™ has the limit b at a if the following holds:

For all € > 0, there exists 6 > 0 such that for all £ € R",
0 < ||z — al| < § implies || f(x) — b|| < e.

Properties of Limits of a function from R” — R
Let f,g: R™ — R be functions of n variables. Suppose that lim,_,p f(x) and lim,_, p g(x) exist. Then

a. Sum Law:
lim (f(2) + g()) = lim f(z)+ lim g(x)

xz— P
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b. Scalar Multiple Law:

lim A\ f(z) =\ lim f(x)

c. Product Law:

lim (f(@)g(@)) = (lim f(@)) (lim g())

z—P z—P x— P

d. Quotient Law: If lim,_,p g(x) # 0,

_f@)  limgp f(x)
25 g(@) ~ Tmep g(a)

Limit Point
Let X C R™. We say that a point p € R™ is a limit point of X if there is a sequence {a,} contained
inside X such that {a,} converges to p.

Paths to show a limit does not exist
Let X C R™, let f : X — R™ be a function, and let a be a limit point of X. Then the following
statements are equivalent:

a. limg 4 f(x) =05
b. For every sequence {a,} converging to a (with a,, # a), the sequence {f(ay,)} converges to b.

In other words, in order for a limit of a multivariable function to exist, it must yield the same value along
all possible approaches.

Squeeze Theorem
Let f(x), g(x), and h(x) be functions of n variables such that

lim f(xz)=L= liﬁn})h(m).

z—P

If there exists § > 0 such that for all € Bs(P) \ {P}, we have that

f(x) < g(x) < h(w).

Limits using Polar Coordinates
Let f(z,y) : R?> — R be a function of two variables, which we can express in polar coordinates as
g(r,0) := f(rcos(8),rsin(d)). Then
lim f(z,y)=1L

(@,y)—(0,0)
if and only if there exists § > 0 and a function h : R — R such that
1. If 0 < r < 4, then |g(r,8) — L| < h(r) for all §, AND
2. lim, o h(r) = 0.

Corollary 2.3.14. If lim, o g(r,0) depends on 6, then the value of the limit will differ for different
straight line paths. Thus, lim, ) (0,0) f(,y) does not exist.
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Derivatives

Limit Definition of the Derivative
A multivariable function f: A C R™ — R" is differentiable at an interior point xo of A if there exists a
linear transformation T : R™ — R™ such that

lim I f(xo +h) — f(xo) —T(h)|

=0.
h—0 IRl

The derivative of f at xo is the linear transformation Df(xg) := T. By our characterization of linear
transformations, D f(xg) : R™ — R™ corresponds to a matrix [D f(xo)] € My xm(R).

Chain Rule
Let f : R® — R™, and let ¢ : R™ — R* be multivariable functions such that f is differentiable at
xo € R", and g is differentiable at f(xo) € R™. Then go f : R" — RF is differentiable at &g € R™, and

D(go f)(xo) = Dg(f(xo0)) o Df(xo)

We can prove this using the definition of the derivative. However, since we know that the derivative can be
computed in terms of the Jacobian, we equivalently have

In Coordinates:  Suppose that f : R® — R™ is differentiable at o € R”, and g : R™ — R* is
differentiable at f(xg) € R™. Then

[gos(@o)] = [Jo(f(20))][Jf(x0)]

For Paths: Let f(x1,...,2,) : R™ — R be a differentiable function, and let r(t) = (x1(t),...,z,(t)) :
R — R"™ be a vector-valued function. Then f(r(t)) : R — R is a single-variable function, and the derivative
of f at ty along the path 7(t) is given by

S0 0) = Y- 2 trtto))el 1)

i=1

where x}(to) is the derivative of the i-th component of r(¢) at to. This measures the rate of change of f
along the path »(t).

f(x(to)) = Vf(r(to)) - ' (to)

The Jacobian
Let f : A C R™ — R"™ be a multivariable function defined by f*: A C R™ — R:

fH(=)
fle)=1 =
fr(x)
The Jacobian matrix of f at x¢ is
Dyif'(xo) Daf'(mo) -+ Dmf'(xo)
D1f2(330) D2f2($0) s Dmf2($0)
p@ol=| . R
len(m()) Dan(:Bo) Dnzfn(mo)

if the partial derivatives exist.

Directional Derivative
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If u = (uy,...,u,) is a unit vector in R™, then the directional derivative of a function f at the point
Xg € R™ in the direction of u is defined as

0 0
Daf(0) = w5 (x0) -+ -+ tn 5 ().
Gradient
If f(xq,...,2,) is a function of n variables, then the gradient of f is the vector-valued function given by
of of
Vi=(=—",...,— ).
! <83§1 T Qo >

That is, Vf is the transpose of the matrix of partial derivatives of f,

Vf=[D(f(z0))] ",

where [A]T indicates the transpose matrix.
Thinking of z as the height of z = f(x,y), the gradient V f points in the direction of steepest ascent.
The opposite of the gradient, —V f, points in the direction of steepest descent.

Linear Approximation
If f: ACR™ — R is differentiable at a point @ = (a1, ...,a,), and = (x1,...,x,) is close to a, then

f@)~ f(a)+ [Dif(@) Daffa) - Dyf(a))(@—a)
~ @+ (5@ - )

Critical Point
A point P € R" is said to be a critical point of a function f : R™ — R if either

a. Df(P)=0, OR
b. Df(P) does not exist.

Hessian Matrix
The Hessian matrix of f: R™ — R at xg is

D1D1f(330) D2D1f($o) T Dnle(ﬂ’»'o)

D1D2f($0) D2D2f($0) T DnD2f(iB0)
[H (o)) = : : : ,

DD, f(xo) D2D,f(xo) -+ DpDy,f(xo)

where D;D; f(xo) denotes the second partial derivative of f with respect to z; and then x; at xo.

Clairaut’s Theorem.
Let f:R™ = R. Suppose that D;f, D;f, and D;D; f exist and are continuous on an open disk D C R".
Then D;D;f exists on D, and moreover, D;D; f = D;D; f on the disk D.

Second Derivative Test

Let £p C U be a critical point of f(x,y) : U — R, and suppose that f is in C?(U). Let us write
D = det[H¢(xo)].

a. If D >0 and f.(xo) > 0, then there is a local minimum at xg.
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b. If D > 0 and f,.(xo) < 0, then there is a local maximum at xg.
c. If D <0, then f has a saddle point at xq.

d. If D = 0 or does not exist, then the test is inconclusive.

Convex Subset
A subset A C R is said to be a convex subset of R if it contains the line segment joining any two points
of A. That is, for all a,b € A, and for all ¢ € [0,1], then a +¢(b—a) € A.

Bounded
A subset D C R" is bounded if there exists some r > 0 such that

D c B,(0).

Boundary Point
A point g € R" is a boundary point of D C R™ if: for all € > 0,

a. B.(zo) N D is non-empty, and
b. B.(xo) N D is non-empty,
where D€ is the complement of D in R".
A subset D C R™ is closed if it contains all of its boundary points.
Langrange Multipliers
Assume that f(z,y) and g(z,y) are differentiable functions. If
a. f(x,y) has a local maximum or minimum subject to the constraint g(z,y) = 0 at a point (a,b), AND
b. Vg(a,b) #0

then there is a scalar X\ such that
Vf(a,b) = AVg(a,b).

We can use the Lagrange equations
fa: (a, b) = )\gw(a7 b)

and
fyla,b) = Agy(a,b).

Global Max/Min
If D is a closed and bounded subset of R", and f is a continuous function on D, then f has a global
maximum and a global minimum in D. That is, there exists an M € D and an m € D such that

f(m) < f(z) < f(M)

for all x € D.
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Frenet Frame Formulas

1
(t) = WT (1)
1 /
O = ™
B=TxN
() x ()
B = o) =<7 0)]
N=BxT
1 /
() = g0
@) x )
"0 = P
1
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