32AH Notes

Brendan Connelly

December 2023

Linear Algebra

Vector Space Axioms

i Additive Associativity: $u + (v + w) = (u + v) + w$

- ii Additive Identity: $v + 0 = 0 + v = v$
- iii Additive Inverse: For all $v \in V$ there exists a $w \in V$ such that $v + w = 0$
- iv Additive Commutativity: $u + v = v + u$
- v Scalar Associativity: $\lambda(\alpha v) = (\lambda \alpha) v$
- vi Scalar Identity: $1v = v$
- vii Distribution of Scalar Addition: $(\lambda + \alpha) \mathbf{u} = \lambda \mathbf{u} + \alpha \mathbf{u}$
- viii Distribution of Vector Addition: $\lambda (\boldsymbol{u} + \boldsymbol{v}) = \lambda \boldsymbol{u} + \lambda \boldsymbol{v}$

Vector Subspace

- i Non-empty ⇒ contains the zero vector
- ii Closed under vector addition $\Rightarrow u + v \in W$
- iii Closed under scalar multiplication $\Rightarrow \lambda(v) \in W$

Pointwise addition and scalar multiplication of continuous functions $f : \mathbb{R} \to \mathbb{R}$

- i $(f+g)(x) := f(x) + g(x)$
- ii $(\lambda f)(x) := \lambda(f(x))$

Basis of a Vector Space

An ordered set of vectors B is a basis of V if

i $\mathcal{B} \subset V$

- ii span $(\mathcal{B}) = V$
- iii β is linearly independent

Linear Independence/Dependence

A set of vectors $A \subset V$ is said to be linearly dependent if for every nonempty finite subset of vectors $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\} \subset A$, there exist scalars α_i , <u>not all zero</u>, such that

$$
\alpha_i \boldsymbol{v}_i + \ldots + \alpha_k \boldsymbol{v}_k = \boldsymbol{0}
$$

Otherwise, the set of vectors A is linearly independent

Linear Maps

A linear map $T: V \to W$ is defined as follows for all $k \in \mathbb{N}$, $\alpha_i \in \mathbb{R}$, and all vectors $x_i \in V$

$$
T\left(\sum_{i}^{k} \alpha_i x_i\right) = \sum_{i}^{k} \alpha_i T(x_i)
$$

Equivalently, a linear map will satisfy the following:

$$
i T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})
$$

ii $T(\lambda \mathbf{u}) = \lambda T(\mathbf{u})$

Standard Matrix

Given a basis $B = \{e_1, \ldots, e_n\}$, the standard matrix A of a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$
[A] = \begin{bmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | & | \end{bmatrix} \in M_{m \times n}(\mathbb{R})
$$

Determinant Formulas

$$
\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
$$

$$
\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}
$$

Inverse of a matrix $\in M_{2\times 2}(\mathbb{R})$

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

Dot Product

The dot product of two vectors can be defined in two primary ways:

1. Algebraic Definition:

Given two vectors $\mathbf{a} = (a_1, a_2, \ldots, a_n)$ and $\mathbf{b} = (b_1, b_2, \ldots, b_n)$ in an n-dimensional space, their dot product is the sum of the products of their corresponding components:

$$
\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + \ldots + a_nb_n
$$

2. Geometric Definition:

The dot product of two vectors \boldsymbol{a} and \boldsymbol{b} can also be defined as the product of their magnitudes and the cosine of the angle θ between them:

$$
\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta
$$

where $||a||$ and $||b||$ are the magnitudes of vectors a and b , respectively.

Cross Product

The cross product of two vectors in three-dimensional space can be defined in three ways:

1. Determinant Definition:

Given two vectors $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$, their cross product can be expressed using the determinant of a matrix:

$$
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
$$

where $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors in the direction of the x, y, and z axes, respectively.

2. Magnitude and Direction Definition:

The magnitude of the cross product is given by the product of the magnitudes of the two vectors and the sine of the angle θ between them:

$$
\|\bm{a} \times \bm{b}\| = \|\bm{a}\| \|\bm{b}\| \sin \theta
$$

The direction of $a \times b$ is perpendicular to the plane formed by a and b, following the right-hand rule.

3. Algebraic Definition:

Given two vectors $u, v \in \mathbb{R}^3$, their cross product $u \times v$ is the unique vector in \mathbb{R}^3 defined by the property:

$$
(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \det \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{bmatrix}
$$

for all $w \in \mathbb{R}^3$.

Properties of the Dot Product:

1.
$$
\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}
$$
 (Commutativity).

- 2. $\lambda(\mathbf{u} \cdot \mathbf{v}) = (\lambda \mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot \lambda(\mathbf{v})$ (Compatibility with Scalars).
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (Distribution).
- 4. $\mathbf{v} \cdot \mathbf{v} \geq 0$, equality only when $\mathbf{v} = \mathbf{0}$ (Positive Definite).
- 5. Cauchy-Schwarz Inequality: $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$.
- 6. Triangle Inequality: $||u + v|| \le ||u|| + ||v||$.

Orthogonal/Orthonormal

A subset of vectors $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ is said to be orthogonal if

$$
v_i \cdot v_j = 0 \quad \text{for all } i \neq j.
$$

Furthermore, if $||v_i|| = 1$ for all $1 \le i \le k$, we say that the subset $S = \{v_1, v_2, \ldots, v_k\} \subseteq \mathbb{R}^n$ is orthonormal.

Projection of a u along a v

Assume $v \neq 0$. The projection of u along v is the vector

$$
\boldsymbol{u}_{\parallel \boldsymbol{v}} = \left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}\right) \boldsymbol{v} = \left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|^2}\right) \boldsymbol{v} = \left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|}\right) \hat{e}_{\boldsymbol{v}}
$$

Properties of the Cross Product:

- 1. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (Anti-commutativity).
- 2. $u \times v$ is orthogonal to both u and v.
- 3. The cross product $\times : \mathbb{R}^3 \to \mathbb{R}^3 \to \mathbb{R}^3$ is bilinear.
- 4. $u \times v = 0$ if and only if u and v are parallel.

where \hat{e}_v is the unit vector in the direction of v .

This vector is sometimes denoted as $proj_n u$.

The scalar $\frac{u \cdot v}{\|v\|}$ is called the scalar component of **u** along **v**.

Parameterization of a Line

The line L in \mathbb{R}^n , passing through the point $P = (x_1, \ldots, x_n)$, in the direction of the vector $v =$ $\langle v_1,\ldots,v_n\rangle$, can be described by the vector-valued function $r(t): \mathbb{R} \to \mathbb{R}^n$ defined by

$$
\boldsymbol{r}(t)=\boldsymbol{r}_0+t\boldsymbol{v}
$$

where r_0 is the vector $r_0 = \overrightarrow{OP} = \langle x_1, \ldots, x_n \rangle$. We call $r(t)$ the vector parametrization of L.

Parameterization of a Plane in \mathbb{R}^n

The plane P through the point $P = (x_1, \ldots, x_n)$ and determined by two non-parallel vectors $u, v \in \mathbb{R}^n$, can be described by the vector function $r(s,t): \mathbb{R}^2 \to \mathbb{R}^n$ defined by

$$
\boldsymbol{r}(s,t)=\boldsymbol{r}_0+s\boldsymbol{u}+t\boldsymbol{v}
$$

where r_0 is the vector $r_0 = \overrightarrow{OP} = \langle x_1, \ldots, x_n \rangle$. We call $r(s, t)$ the parametrization of P.

Injective

Let $f: V \to W$ be a linear map. We say that f is injective or one-to-one (or sometimes, f is an injection) if the following holds: For all $v_1, v_2 \in V$, if $f(v_1) = f(v_2)$, then $v_1 = v_2$.

That is, a map f is injective if any element in the codomain of f is the image of at most one element in its domain.

Surjective

Let $f: V \to W$ be a linear map. We say that f is surjective or onto (or sometimes, f is a surjection) if the following holds: For all $w \in W$, there exists a $v \in V$ such that $f(v) = w$.

That is, any element in the codomain of f is the image of at least one element in its domain.

Bijective

Let $f: V \to W$ be a linear map. We say that f is bijective (or sometimes, f is a bijection) if f is both injective and surjective.

That is, any element in the codomain of f is the image of exactly one element in its domain. This implies that for all $w \in W$, there exists exactly one $v \in V$ such that $f(v) = w$.

Invertiblility

A linear transformation $T: V \to W$ is invertible if there exists a linear transformation $S: W \to V$ such that $S \circ T = id_V$ and $T \circ S = id_W$, where id_V and id_W are the identity maps on V and W, respectively.

Recall that linear transformations from \mathbb{R}^n to \mathbb{R}^m can be written as matrices. Thus, a matrix $A \in$ $M_{n\times n}(\mathbb{R})$ is invertible if there exists a matrix $B \in M_{n\times n}(\mathbb{R})$ such that $AB = BA = I_n$. Here, B is called the inverse of A.

Isomorphism

A linear transformation $T: V \to W$ is an isomorphism of vector spaces if T satisfies any of the following equivalent conditions:

- 1. T is invertible.
- 2. T is bijective.

If $T: V \to W$ is an isomorphism, we say that V and W are isomorphic vector spaces.

We can check if a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$ is an isomorphism by checking if the determinant of the matrix representing the linear transformation is nonzero. This comes from the properties of matrix multiplication and the definition of invertibility.

Formula for a Plane

The plane P in \mathbb{R}^3 determined by a point $P_0 = (x_0, y_0, z_0)$ and a normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation:

$$
\boldsymbol{n} \cdot \langle x,y,z \rangle = d
$$

where we set $d = ax_0 + by_0 + cz_0$.

Hyperplane

Let $n \in V$, with $n \neq 0$. The hyperplane W normal to n (passing through the origin) is the subspace defined as

$$
W = \{ \boldsymbol{v} \in V \mid \boldsymbol{n} \cdot \boldsymbol{v} = 0 \}
$$

We say that n is a normal vector of W .

Quadric Surfaces

1. Elliptic Cylinder: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$

2. Hyperbolic Cylinder: $\left(\frac{y}{b}\right)^2 - \left(\frac{x}{a}\right)^2 = 1$

3. Parabolic Cylinder: $y = ax^2$

4. Ellipsoid:
$$
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1
$$

5. Hyperboloid One Sheet: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 + 1$

6. Hyperboloid Two Sheets: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 - 1$

7. Elliptic Paraboloid: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = z$

8.Hyperbolic Paraboloid: $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = z$

9. Cone (Elliptical): $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2$

Graphs

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, its graph is the following subset of \mathbb{R}^{n+1} :

$$
\Gamma_f := \{(x_1,\ldots,x_n,f(x_1,\ldots,x_n))\} \subset \mathbb{R}^{n+1}
$$

In other words, the graph is given by the equation

$$
x_{n+1} = f(x_1, \ldots, x_n)
$$

in \mathbb{R}^{n+1} .

Traces

The trace in the plane P of a graph $\Gamma \subset \mathbb{R}^3$ is the intersection of Γ with P. That is,

$$
\Gamma \cap P = \{ x \in \mathbb{R}^3 \mid x \in \Gamma \text{ and } x \in P \}
$$

Level Curves

The level curves (isoclines, contour map) of a function of two variables $f(x, y)$ are the z-traces of the graph $z = f(x, y)$.

Vanishing Locus

Given a multivariable function $G(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}$, its vanishing locus is the set of points

$$
\{(x_1, \ldots, x_n) \mid G(x_1, \ldots, x_n) = 0\}
$$

All quadric surfaces are the vanishing loci of the general quadratic equation

$$
Q(x, y, z) = Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + ax + by + cz + d
$$

Limits

Limit of Sequence Definition

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . We say that the sequence $\{a_n\}$ converges to the vector $L \in \mathbb{R}^k$ if the following holds:

For all $\varepsilon > 0$, there exists an M such that for all $m > M$, $||a_m - L|| < \varepsilon$.

We say L is the limit of the sequence $\{a_n\}$. If no such L exists, we say that $\{a_n\}$ diverges.

Definition of a Ball

Let $P \in \mathbb{R}^n$. The open ball of radius ε around P, denoted $B_{\varepsilon}(P)$, is the set of points defined by

$$
B_{\varepsilon}(P):=\{\boldsymbol{x}\in\mathbb{R}^n\,|\,\|\boldsymbol{x}-\boldsymbol{P}\|<\varepsilon\}.
$$

Subsequences

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . A subsequence of $\{a_n\}$ is a sequence $\{b_i\}$, where

$$
b_i=a_{n_i}
$$

such that $n_1 < n_2 < \cdots < n_i < \cdots$.

Let $\{a_n\}$ be a sequence of vectors in \mathbb{R}^k . If $\{a_n\}$ has a subsequence $\{a_{n_i}\}$ that diverges, then $\{a_n\}$ diverges.

Delta-Epsilon Limit Definition

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ has the limit **b** at **a** if the following holds:

For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}^n$, $0 < ||x - a|| < \delta$ implies $||f(x) - b|| < \varepsilon$.

Properties of Limits of a function from $\mathbb{R}^n \to \mathbb{R}$

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be functions of n variables. Suppose that $\lim_{\mathbf{x} \to \mathbf{P}} f(\mathbf{x})$ and $\lim_{\mathbf{x} \to \mathbf{P}} g(\mathbf{x})$ exist. Then

a. Sum Law:

$$
\lim_{\mathbf{x}\to\mathbf{P}}(f(\mathbf{x})+g(\mathbf{x}))=\lim_{\mathbf{x}\to\mathbf{P}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{P}}g(\mathbf{x})
$$

b. Scalar Multiple Law:

$$
\lim_{\mathbf{x}\to\mathbf{P}} \lambda f(\mathbf{x}) = \lambda \lim_{\mathbf{x}\to\mathbf{P}} f(\mathbf{x})
$$

c. Product Law:

$$
\lim_{\mathbf{x}\to\mathbf{P}}(f(\mathbf{x})g(\mathbf{x})) = \left(\lim_{\mathbf{x}\to\mathbf{P}}f(\mathbf{x})\right)\left(\lim_{\mathbf{x}\to\mathbf{P}}g(\mathbf{x})\right)
$$

d. Quotient Law: If $\lim_{x\to P} g(x) \neq 0$,

$$
\lim_{x \to P} \frac{f(x)}{g(x)} = \frac{\lim_{x \to P} f(x)}{\lim_{x \to P} g(x)}
$$

Limit Point

Let $X \subset \mathbb{R}^n$. We say that a point $p \in \mathbb{R}^n$ is a limit point of X if there is a sequence $\{a_n\}$ contained inside X such that $\{a_n\}$ converges to p.

Paths to show a limit does not exist

Let $X \subset \mathbb{R}^n$, let $f: X \to \mathbb{R}^m$ be a function, and let a be a limit point of X. Then the following statements are equivalent:

a. $\lim_{x\to a} f(x) = b$

b. For every sequence $\{a_n\}$ converging to a (with $a_n \neq a$), the sequence $\{f(a_n)\}$ converges to **b**.

In other words, in order for a limit of a multivariable function to exist, it must yield the same value along all possible approaches.

Squeeze Theorem

Let $f(\mathbf{x})$, $g(\mathbf{x})$, and $h(\mathbf{x})$ be functions of n variables such that

$$
\lim_{\mathbf{x}\to P} f(\mathbf{x}) = L = \lim_{\mathbf{x}\to P} h(\mathbf{x}).
$$

If there exists $\delta > 0$ such that for all $x \in B_{\delta}(\mathbf{P}) \setminus \{\mathbf{P}\}\)$, we have that

$$
f(\boldsymbol{x}) \leq g(\boldsymbol{x}) \leq h(\boldsymbol{x}).
$$

Limits using Polar Coordinates

Let $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables, which we can express in polar coordinates as $g(r, \theta) := f(r \cos(\theta), r \sin(\theta)).$ Then

$$
\lim_{(x,y)\to(0,0)} f(x,y) = L
$$

if and only if there exists $\delta > 0$ and a function $h : \mathbb{R} \to \mathbb{R}$ such that

1. If $0 < r < \delta$, then $|g(r, \theta) - L| \leq h(r)$ for all θ , AND

2. $\lim_{r \to 0} h(r) = 0.$

Corollary 2.3.14. If $\lim_{r\to 0} g(r,\theta)$ depends on θ , then the value of the limit will differ for different straight line paths. Thus, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Derivatives

Limit Definition of the Derivative

A multivariable function $f: A \subset \mathbb{R}^m \to \mathbb{R}^n$ is *differentiable* at an interior point x_0 of A if there exists a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ such that

$$
\lim_{h\to 0}\frac{\|f(x_0+h)-f(x_0)-T(h)\|}{\|h\|}=0.
$$

The derivative of f at x_0 is the linear transformation $Df(x_0) := T$. By our characterization of linear transformations, $Df(x_0): \mathbb{R}^m \to \mathbb{R}^n$ corresponds to a matrix $[Df(x_0)] \in M_{n \times m}(\mathbb{R})$.

Chain Rule

Let $f : \mathbb{R}^n \to \mathbb{R}^m$, and let $g : \mathbb{R}^m \to \mathbb{R}^k$ be multivariable functions such that f is differentiable at $x_0 \in \mathbb{R}^n$, and g is differentiable at $f(x_0) \in \mathbb{R}^m$. Then $g \circ f : \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at $x_0 \in \mathbb{R}^n$, and

$$
D(g \circ f)(\boldsymbol{x_0}) = Dg(f(\boldsymbol{x_0})) \circ Df(\boldsymbol{x_0})
$$

We can prove this using the definition of the derivative. However, since we know that the derivative can be computed in terms of the Jacobian, we equivalently have

In Coordinates: Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$, and $g : \mathbb{R}^m \to \mathbb{R}^k$ is differentiable at $f(\mathbf{x_0}) \in \mathbb{R}^m$. Then

$$
[J_{g \circ f}(\bm{x_0})] = [J_g(f(\bm{x_0}))][J_f(\bm{x_0})]
$$

For Paths: Let $f(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, and let $r(t) = \langle x_1(t), \ldots, x_n(t) \rangle$: $\mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Then $f(\mathbf{r}(t)) : \mathbb{R} \to \mathbb{R}$ is a single-variable function, and the derivative of f at t_0 along the path $r(t)$ is given by

$$
\frac{d}{dt}f(\mathbf{r}(t_0)) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{r}(t_0))x_i'(t_0)
$$

where $x_i'(t_0)$ is the derivative of the *i*-th component of $r(t)$ at t_0 . This measures the rate of change of f along the path $r(t)$.

$$
f(\mathbf{r}(t_0)) = \nabla f(\mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0)
$$

The Jacobian

Let $f: A \subset \mathbb{R}^m \to \mathbb{R}^n$ be a multivariable function defined by $f^i: A \subset \mathbb{R}^m \to \mathbb{R}$:

$$
f(\boldsymbol{x}) = \begin{bmatrix} f^1(\boldsymbol{x}) \\ \vdots \\ f^n(\boldsymbol{x}) \end{bmatrix}.
$$

The Jacobian matrix of f at x_0 is

$$
[J_f(\boldsymbol{x_0})] = \begin{bmatrix} D_1 f^1(\boldsymbol{x_0}) & D_2 f^1(\boldsymbol{x_0}) & \cdots & D_m f^1(\boldsymbol{x_0}) \\ D_1 f^2(\boldsymbol{x_0}) & D_2 f^2(\boldsymbol{x_0}) & \cdots & D_m f^2(\boldsymbol{x_0}) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f^n(\boldsymbol{x_0}) & D_2 f^n(\boldsymbol{x_0}) & \cdots & D_m f^n(\boldsymbol{x_0}) \end{bmatrix}
$$

if the partial derivatives exist.

Directional Derivative

If $\mathbf{u} = \langle u_1, \ldots, u_n \rangle$ is a unit vector in \mathbb{R}^n , then the directional derivative of a function f at the point $\mathbf{x_0} \in \mathbb{R}^n$ in the direction of **u** is defined as

$$
D_{\mathbf{u}}f(\mathbf{x_0}) = u_1 \frac{\partial f}{\partial x_1}(\mathbf{x_0}) + \dots + u_n \frac{\partial f}{\partial x_n}(\mathbf{x_0}).
$$

Gradient

If $f(x_1, \ldots, x_n)$ is a function of n variables, then the *gradient* of f is the vector-valued function given by

$$
\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle.
$$

That is, ∇f is the transpose of the matrix of partial derivatives of f,

$$
\nabla f = \left[D(f(\boldsymbol{x_0})) \right]^\top,
$$

where $[A]^\top$ indicates the transpose matrix.

Thinking of z as the height of $z = f(x, y)$, the gradient ∇f points in the direction of steepest ascent. The opposite of the gradient, $-\nabla f$, points in the direction of steepest descent.

Linear Approximation

If $f: A \subset \mathbb{R}^m \to \mathbb{R}$ is differentiable at a point $\mathbf{a} = (a_1, \ldots, a_n)$, and $\mathbf{x} = (x_1, \ldots, x_n)$ is close to \mathbf{a} , then

$$
f(\boldsymbol{x}) \approx f(\boldsymbol{a}) + [D_1 f(\boldsymbol{a}) \quad D_2 f(\boldsymbol{a}) \quad \cdots \quad D_n f(\boldsymbol{a})] (\boldsymbol{x} - \boldsymbol{a})
$$

$$
= f(\boldsymbol{a}) + \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(\boldsymbol{a})\right) (x_i - a_i).
$$

Critical Point

A point $P \in \mathbb{R}^n$ is said to be a *critical point* of a function $f : \mathbb{R}^n \to \mathbb{R}$ if either

a. $Df(P) = 0$, OR

b. $Df(P)$ does not exist.

Hessian Matrix

The Hessian matrix of $f : \mathbb{R}^n \to \mathbb{R}$ at x_0 is

$$
[H_f(\boldsymbol{x_0})] = \begin{bmatrix} D_1 D_1 f(\boldsymbol{x_0}) & D_2 D_1 f(\boldsymbol{x_0}) & \cdots & D_n D_1 f(\boldsymbol{x_0}) \\ D_1 D_2 f(\boldsymbol{x_0}) & D_2 D_2 f(\boldsymbol{x_0}) & \cdots & D_n D_2 f(\boldsymbol{x_0}) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 D_n f(\boldsymbol{x_0}) & D_2 D_n f(\boldsymbol{x_0}) & \cdots & D_n D_n f(\boldsymbol{x_0}) \end{bmatrix},
$$

where $D_i D_j f(x_0)$ denotes the second partial derivative of f with respect to x_i and then x_j at x_0 .

Clairaut's Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$. Suppose that $D_i f$, $D_j f$, and $D_i D_j f$ exist and are continuous on an open disk $D \subset \mathbb{R}^n$. Then D_jD_if exists on D, and moreover, $D_iD_jf = D_jD_if$ on the disk D.

Second Derivative Test

Let $x_0 \text{ }\subset U$ be a critical point of $f(x,y) : U \to \mathbb{R}$, and suppose that f is in $C^2(U)$. Let us write $D = det[H_f(\boldsymbol{x_0})].$

a. If $D > 0$ and $f_{xx}(\mathbf{x_0}) > 0$, then there is a local minimum at $\mathbf{x_0}$.

b. If $D > 0$ and $f_{xx}(x_0) < 0$, then there is a local maximum at x_0 .

c. If $D < 0$, then f has a saddle point at x_0 .

d. If $D = 0$ or does not exist, then the test is inconclusive.

Convex Subset

A subset $A \subset \mathbb{R}^n$ is said to be a convex subset of \mathbb{R}^n if it contains the line segment joining any two points of A. That is, for all $a, b \in A$, and for all $t \in [0,1]$, then $a + t(b - a) \in A$.

Bounded

A subset $D \subset \mathbb{R}^n$ is *bounded* if there exists some $r > 0$ such that

$$
D\subset B_r(\mathbf{0}).
$$

Boundary Point

A point $\mathbf{x_0} \in \mathbb{R}^n$ is a *boundary point* of $D \subset \mathbb{R}^n$ if: for all $\varepsilon > 0$,

a. $B_{\varepsilon}(\boldsymbol{x}_0) \cap D$ is non-empty, and

b. $B_{\varepsilon}(\boldsymbol{x_0}) \cap D^c$ is non-empty,

where D^c is the complement of D in \mathbb{R}^n .

A subset $D \subset \mathbb{R}^n$ is *closed* if it contains all of its boundary points.

Langrange Multipliers

Assume that $f(x, y)$ and $g(x, y)$ are differentiable functions. If

a. $f(x, y)$ has a local maximum or minimum subject to the constraint $g(x, y) = 0$ at a point (a, b) , AND

b. $\nabla g(a, b) \neq 0$

then there is a scalar λ such that

$$
\nabla f(a,b) = \lambda \nabla g(a,b).
$$

We can use the Lagrange equations

$$
f_x(a,b) = \lambda g_x(a,b)
$$

and

$$
f_y(a,b) = \lambda g_y(a,b).
$$

Global Max/Min

If D is a closed and bounded subset of \mathbb{R}^n , and f is a continuous function on D, then f has a global maximum and a global minimum in D. That is, there exists an $M \in D$ and an $m \in D$ such that

$$
f(m) \le f(x) \le f(M)
$$

for all $x \in D$.

Frenet Frame Formulas

$$
T(t) = \frac{1}{||\mathbf{r}'(t)||} \mathbf{r}'(t)
$$

$$
\mathbf{N}(t) = \frac{1}{||\mathbf{T}'(t)||} \mathbf{T}'(t)
$$

$$
\mathbf{B} = \mathbf{T} \times \mathbf{N}
$$

$$
\mathbf{B}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}
$$

$$
\mathbf{N} = \mathbf{B} \times \mathbf{T}
$$

$$
\kappa(t) = \frac{1}{||\mathbf{r}'(t)||} ||\mathbf{T}'(t)||
$$

$$
\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}
$$

$$
\kappa(t) = \frac{1}{R}
$$