# Math 184 Running Notes

Brendan Connelly

April to June 2025

## **Counting Principles**

**Definition** (Injection). A function  $f : A \to B$  is an **injection** if for all  $a, a' \in A, a \neq a'$  implies  $f(a) \neq f(a')$ .

**Definition** (Surjection). A function  $f : A \to B$  is a surjection if for all  $b \in B$ , there exists  $a \in A$  such that f(a) = b.

**Definition** (Bijection). A function  $f : A \to B$  is a **bijection** if it is both injective and surjective.

**Definition** (Inverse Function). A function  $g: B \to A$  is called the **inverse** of  $f: A \to B$  if

 $g \circ f = \mathrm{id}_A$  and  $f \circ g = \mathrm{id}_B$ 

In this case,  $g = f^{-1}$ .

**Theorem.** A function  $f : A \to B$  is a bijection if and only if it has an inverse.

**Definition** (Cardinality). The **cardinality** of a finite set A is the number of elements in A.

**Proposition** (Cardinality of Equivalent Sets). If  $A \cong B$  (i.e., there exists a bijection  $A \to B$ ), then |A| = |B|.

**Definition** (Disjoint Sets). Sets A and B are **disjoint** if  $A \cap B = \emptyset$ .

**Proposition** (Addition Principle). If A and B are disjoint, then

$$|A \cup B| = |A| + |B|$$

**General version:** If  $A_1, \ldots, A_n$  are disjoint, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = |A_1| + |A_2| + \dots + |A_n|$$

Problem 1. How many squares are in the figure below?

Let 
$$S = \{ \text{all squares in the figure} \}, S_k = \{ k \times k \text{ squares} \}$$

Then,

$$S = S_1 \cup S_2 \cup S_3$$

By the Addition Principle,

$$|S| = |S_1| + |S_2| + |S_3| = 9 + 4 + 1 = 14$$

**Definition** (Cartesian Product). The **Cartesian product** of sets A and B is defined as

$$A \times B := \{(a, b) : a \in A, b \in B\}$$

**Proposition** (Multiplication Principle).

$$|A \times B| = |A| \cdot |B|$$

More generally, for sets  $A_1, \ldots, A_n$ ,

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdots |A_n|$$

Notation 1.

$$[n] := \{1, 2, \dots, n\}$$

**Definition** (Permutation). A **permutation** of a set A is a linear ordering of the elements of A, or equivalently, a bijection

 $f:[n] \to A$  where n:=|A|

Let  $S_A$  denote the set of permutations of A.

Notation 2. The factorial of n is defined as

$$n! := n(n-1)(n-2)\cdots 1$$

**Example:**  $3! = 3 \cdot 2 \cdot 1 = 6$ 

**Theorem.** If A is a finite set with |A| = n, then the number of permutations of A is

$$|S_A| = n!$$

**Definition** (Partial Permutation). Let A be an n-element set. A **partial permutation** of A is a linear ordering of k elements of A.

Equivalently, partial permutations correspond to injections

$$f:[k] \hookrightarrow A$$

**Theorem.** The number of injections  $[k] \hookrightarrow A$  is

$$n(n-1)(n-2)\cdots(n-k+1) =: (n)_k$$

where  $(n)_k$  is the falling factorial.

**Proposition** (Subtraction Principle). Let  $A \subseteq B$ . Then the size of the set difference is

$$|B \setminus A| = |B| - |A|$$

**Proposition** (Division Principle, Version 1). Suppose  $f : A \rightarrow B$  is a *d*-to-1 map. That is,

$$\forall b \in B, |f^{-1}(b)| = d \text{ where } f^{-1}(b) = \{a \in A : f(a) = b\}$$

Then,

$$|B| = \frac{|A|}{d}$$

**Definition** (Circular Permutation). A **circular permutation** of a set *A* is an arrangement of the elements of *A* around a circle such that rotations of the same arrangement are considered the same (but not reflections).

**Definition** (Alphabet and Word). An **alphabet** A is a finite set whose elements are called **letters**. A **word** in A is a sequence of letters from A (including the **empty word**). The number of letters in a word is called the **length** of the word.

**Proposition.** The number of words of length k over an n-letter alphabet is

 $n^k$ 

**Proposition.** The number of subsets of an *n*-element set A is  $2^n$ . That is,

$$|\mathcal{P}(A)| = 2^{|A|}$$

Notation 3. Let

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

**Proposition.** The number of words of length *n* over the alphabet  $A = \{0, 1\}$  that contain exactly *k* 1's (and n - k 0's) is  $\binom{n}{k}$ 

**Definition** (Lattice Path). A **lattice path** *L* from (0,0) to (m, n) is a sequence  $(v_0, v_1, ..., v_k)$  such that  $v_0 = (0,0), \quad v_k = (m,n), \text{ and } v_{i+1} - v_i \in \{(1,0), (0,1)\} \text{ for all } i = 0, ..., k - 1.$ 

**Proposition.** The number of lattice paths from (0,0) to (m,n) is

$$\binom{m+n}{n}$$

Proposition.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Proof.

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

This identity follows from the binomial expansion of  $(1+1)^n$ .

**Proposition** (Pascal's Recurrence).

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

#### Pascal's Triangle:

**Proposition** (Binomial Convolution Identity).

$$\binom{\ell+m}{n} = \sum_{k=0}^{n} \binom{\ell}{k} \binom{m}{n-k}$$

*Proof.* The left-hand side counts the number of ways to choose n elements from  $A \cup B$  where  $|A| = \ell$  and |B| = m.

The right-hand side breaks this down by choosing k elements from A and n - k from B, summing over all possible k.

**Theorem** (Binomial Theorem). For every  $n \ge 0$ ,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

*Proof.* By induction on n.

- is

**Definition** (Weak Composition). A weak composition of k into n parts is a solution to the equation

$$x_1 + x_2 + \dots + x_n = k$$
 where  $x_i \in \mathbb{Z}, x_i \ge 0$ 

**Theorem** (Weak Composition Theorem). For any integers  $n \ge 1$  and  $k \ge 0$ , the number of weak compositions of k into n parts — that is, the number of nonnegative integer solutions to

$$x_1 + x_2 + \dots + x_n = k$$
$$\binom{n+k-1}{k}.$$

**Example.** Let n = 3 and k = 2. Then there are 6 weak compositions:

$$0 + 0 + 2 
0 + 2 + 0 
2 + 0 + 0 
1 + 1 + 0 
1 + 0 + 1 
0 + 1 + 1$$

There are 6 weak compositions.

Definition (Multiset). A multiset is a generalization of a set in which elements may be repeated.

Notation 4. Let

$$\binom{n}{k} := \binom{n+k-1}{k}$$

denote the number of multisets of size k from a set of n elements.

**Theorem.** The number of multisets of size k from a set S is

$$\left( \binom{|S|}{k} \right) = \binom{|S|+k-1}{k}$$

*Proof.* We count the number of weak compositions of k into n parts.

We imagine placing n-1 bars among k indistinguishable stars to divide them into n chambers. This corresponds to choosing n-1 positions for bars among k+n-1 total slots.

Hence the number of such compositions is

$$\binom{n+k-1}{k}$$

| _ |  |   |
|---|--|---|
|   |  | L |
|   |  | L |
|   |  | L |

**Definition** (Composition). A composition of k into n parts is a solution to the equation

 $x_1 + x_2 + \dots + x_n = k$  where  $x_i \in \mathbb{Z}, x_i \ge 1$ 

**Theorem.** The number of compositions of k into n parts is

$$\binom{k-1}{n-1}$$

Notation 5. Let

$$\binom{n}{a_1,\ldots,a_k} := \frac{n!}{a_1!\cdots a_k!}$$
 where  $a_1 + \cdots + a_k = n$ 

Theorem. Let

$$M = \{a_1 \cdot x_1, a_2 \cdot x_2, \ldots, a_k \cdot x_k\}$$

be a multiset with  $n = a_1 + \cdots + a_k$  elements. Then the number of distinct permutations of M is

$$|S_M| = \binom{n}{a_1, \dots, a_k}$$

Theorem (Multinomial Theorem).

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{a_1 + \dots + a_k = n} {\binom{n}{a_1, \dots, a_k}} x_1^{a_1} \cdots x_k^{a_k}$$

**Definition** (Generalized Binomial Coefficient). We define the **generalized binomial coefficient** for any  $\alpha \in \mathbb{C}$  and  $k \in \mathbb{Z}_{\geq 0}$  by

$$\binom{\alpha}{k} := \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!}$$

Theorem (Newton's Binomial Theorem).

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$
 whenever the LHS makes sense

Theorem.

 $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} \left( \binom{n+k-1}{k} \right) x^k \quad \text{(a generating function using generalized binomial coefficients)}$ 

*Proof.* Use Newton's Binomial Theorem with  $\alpha = -n$ :

$$(1+x)^{-n} = \sum_{k=0}^{\infty} \binom{-n}{k} x^k$$

Using the identity

$$\binom{-n}{k} = (-1)^k \left( \binom{n+k-1}{k} \right)$$

we get

$$(1+x)^{-n} = \sum_{k=0}^{\infty} (-1)^k \left( \binom{n+k-1}{k} \right) x^k = \sum_{k=0}^{\infty} \left( \binom{n+k-1}{k} \right) (-x)^k$$

Now replace x with -x:

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} \left( \binom{n+k-1}{k} \right) x^k$$

| Г | _ | _ |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |

**Example.** For n = 1,

$$\left(\binom{1+k-1}{k}\right) = \binom{k}{k} = 1 \quad \text{for all } k \Rightarrow \frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

### **Generating Functions**

Definition (Generating Function). The generating function for (A, w) is the formal power series

$$F(x) := \sum_{a \in A} x^{w(a)}, \quad \underline{\text{Note:}} \quad F(1) = |A|.$$

Lemma.

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Proof.

$$F(x) = \sum_{a \in A} x^{w(a)}$$
$$= \sum_{n=0}^{\infty} \sum_{\substack{a \in A \\ w(a) = n}} x^{w(a)}$$
$$= \sum_{n=0}^{\infty} a_n x^n.$$

Definition ((Formal Power Series)). A formal power series is an expression of the form

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$

We do not require any notions of convergence, and usually do not want to plug in values for x. Instead, we only care about the coefficients of F(x).

**Notation 6.** We denote the coefficient of  $x^n$  in F(x) by

 $[x^n]F(x)$ 

**Proposition** ((Operations on Formal Power Series)). We can perform several familiar operations on formal power series:

1. <u>Addition</u>: If  $F(x) = \sum_{n} a_n x^n$ ,  $G(x) = \sum_{n} b_n x^n$ , then

$$F(x) + G(x) := \sum_{n} (a_n + b_n) x^n$$

2. Multiplication:

$$F(x) \cdot G(x) = \sum_{n} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$$
 (same as polynomials)

3. Differentiation:

$$F'(x) := \sum_{n=0}^{\infty} na_n x^{n-1}$$

4. Integration:

$$\int F(x) \, dx := \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

Theorem ((Multiplication Principle for Generating Functions)). Let

$$S \stackrel{\sim}{\longleftrightarrow} A \times B \times C \times D \times \cdots$$

be a bijection, where  $s \leftrightarrow (a, b, c, d, \ldots) \in S$ .

Suppose there are weight functions:

$$w: S \to \mathbb{N}_{\geq 0}$$
  

$$\alpha: A \to \mathbb{N}_{\geq 0}$$
  

$$\beta: B \to \mathbb{N}_{\geq 0}$$
  

$$\gamma: C \to \mathbb{N}_{\geq 0}$$
  

$$\delta: D \to \mathbb{N}_{\geq 0}$$
  

$$\vdots$$

such that

$$w(s) = \alpha(a) + \beta(b) + \gamma(c) + \delta(d) + \cdots$$

Then the generating function satisfies

$$\sum_{s \in S} x^{w(s)} = \left(\sum_{a \in A} x^{\alpha(a)}\right) \left(\sum_{b \in B} x^{\beta(b)}\right) \left(\sum_{c \in C} x^{\gamma(c)}\right) \left(\sum_{d \in D} x^{\delta(d)}\right) \cdots$$

**Example** (Binomial Theorem again). Let  $S = \{\text{binary strings of length } n\}$ 

$$A_1 = \dots = A_n = \{0, 1\}$$

Then

$$\mathcal{S} \longleftrightarrow A_1 \times \cdots \times A_n$$
 with  $s = b_1 \cdots b_n \mapsto (b_1, \dots, b_n)$ 

Define w(s) := # 1's in s

$$\alpha_i(b_i) := \begin{cases} 0 & \text{if } b_i = 0 \\ 1 & \text{if } b_i = 1 \end{cases} \Rightarrow w(s) = \alpha_1(b_1) + \dots + \alpha_n(b_n)$$

We have

$$\sum_{s \in \mathcal{S}} x^{w(s)} = \sum_{k \ge 0} \binom{n}{k} x^k \quad \left( \text{by def'n of } \binom{n}{k} \right)$$

and

$$\sum_{b_i \in A_i} x^{b_i} = 1 + x$$

Multiplication Principle

$$\Rightarrow \quad (1+x)^n = \sum_{k \ge 0} \binom{n}{k} x^k$$

**Definition.** A weight function on  $S_n$  is called a <u>statistic</u>.

**Definition.** Let  $w = w_1 \dots w_n \in S_n$ . A pair  $(w_i, w_j)$  is called an <u>inversion</u> if i < j and  $w_i > w_j$ .

**Remark.** We want to study the function  $\mathbf{inv}: S_n \to \mathbb{Z}_{\geq 0}$  defined by

$$\mathbf{inv}(w) := \# \text{ of inversions}$$

**Definition.** Let  $\mathcal{I}(n,k) := \# \{ w \in S_n : \mathbf{inv}(w) = k \}$ 

**Proposition** ((4.1) Generating Function for Inversions).

$$\sum_{k \ge 0} \mathcal{I}(n,k) x^k = \sum_{w \in S_n} x^{inv(w)} = 1 \cdot (1+x) \cdot (1+x+x^2) \cdots (1+x+\dots+x^{n-1})$$

Example (Computing Coefficients).

 $\mathcal{I}(n,1) = [x^1](1 \cdot (1+x) \cdots) = (\text{choose one } x \text{ from one of the } n-1 \text{ factors}) = (n-1)$ 

$$\mathcal{I}(n,2) = [x^2](1)(1+x)\cdots(1+x+\cdots+x^{n-1})$$
$$= \binom{n-1}{2} \quad \text{(choose two factors to each contribute one } x)$$

**Definition.** The statistic given by the number of cycles in a permutation is defined as follows: For  $w \in S_n$ , let C(w) := # cycles in w.

**Definition.** Let C(n,k) denote  $\# \{ w \in S_n : C(w) = k \}$ .

Remark. We call these the (signed) Stirling numbers of the first kind.

Definition. The signed Stirling numbers of the first kind are defined as

$$C(n,k) := \# \{ w \in S_n : C(w) = k \}$$

where  $C: S_n \to \mathbb{Z}_{\geq 0}$  is the statistic given by

$$C(w) := \#$$
 cycles in  $w$ 

**Proposition** ((4.2) Basic Values). • C(n, n) = 1

• C(n,1) = (n-1)!

**Theorem** ((4.3) Exponential Generating Function).

$$\sum_{k \ge 0} C(n,k)x^k = x(x+1)(x+2)\cdots(x+n-1)$$

**Proposition.** Given any permutation, say  $w = 4271635 \in S_7$ , we can express it as a product of disjoint cycles. For example,

$$w = (1 \ 4 \ 6 \ 3)(2)(5 \ 7)$$

Each element i is either

- 1. inserted as a new cycle, or
- 2. inserted into an existing cycle.

This process gives rise to a combinatorial encoding: each  $w \in S_n$  corresponds to a tuple  $(b_1, \ldots, b_n)$  with  $b_i$  indicating how *i* was inserted.

Let

$$B_i := \begin{cases} \{0\} & \text{if } i \text{ starts a new cycle} \\ \{1, 2, \dots, i-1\} & \text{otherwise} \end{cases} \Rightarrow b_i \in B_i$$

We define a map  $S_n \longrightarrow B_1 \times \cdots \times B_n$ , where

$$C(w) = \# \{i : b_i = 0\}$$

Then

$$\sum_{b_i \in B_i} x^{\beta(b_i)} = x + (i-1)x^0 = x(x+1)\cdots(x+n-1)$$

Therefore,

$$\sum_{k \ge 0} C(n,k)x^k = x(x+1)\cdots(x+n-1)$$

**Proposition** ((4.4) Recurrence for Stirling Numbers of the First Kind).

$$C(n,k) = C(n-1,k-1) + (n-1)C(n-1,k)$$

Using generating functions. Recall the generating function:

$$\sum_{k \ge 0} C(n,k) x^k = x(x+1) \cdots (x+n-1)$$

We extract the  $x^k$  coefficient:

$$C(n,k) = [x^k] x(x+1) \cdots (x+n-1) = [x^k] (x+1) \cdots (x+n-2) \cdot (x+n-1)$$

Now write:

$$= [x^{k}](x+1)\cdots(x+n-2)\cdot\sum_{j}C(n-1,j)x^{j}$$

Then:

$$= [x^k] \left( \sum_{j} C(n-1,j) x^j \cdot (x+n-1) \right) = \sum_{j} C(n-1,j) [x^k] (x^{j+1} + (n-1) x^j)$$

To get  $x^k$ , we need:

$$j = k - 1 \Rightarrow C(n - 1, k - 1)$$
 and  $j = k \Rightarrow (n - 1)C(n - 1, k)$ 

Therefore:

$$C(n,k) = C(n-1,k-1) + (n-1)C(n-1,k)$$

Combinatorial proof. We analyze how to insert the last element n into a permutation of  $S_{n-1}$ :

- Case 1: Place n as a new singleton cycle. This increases the number of cycles by 1, contributing C(n-1, k-1).
- Case 2: Insert n into one of the existing k cycles. There are (n-1) positions available across all cycles, contributing (n-1)C(n-1,k).

Thus:

$$C(n,k) = C(n-1,k-1) + (n-1)C(n-1,k)$$

**Definition.** The signed Stirling numbers of the first kind, denoted s(n, k), are defined via the identity

$$x(x-1)(x-2)\cdots(x-n+1) = \sum_{k=0}^{n} s(n,k) x^{k}$$

Equivalently,

$$(x)_n := x(x-1)\cdots(x-n+1) = \sum_{k=0}^n (-1)^{n-k} C(n,k) x^k$$

where C(n, k) are the (unsigned) Stirling numbers of the first kind.

This identity reflects the change of basis between the polynomial basis  $\{x^k\}$  and the falling factorial basis  $\{(x)_k\}$ .

**Definition.** A partition of an *n*-element set X is a collection  $\Pi = \{B_1, \ldots, B_k\}$  of subsets of X such that:

- 1.  $B_i \neq \emptyset$
- 2.  $B_i \cap B_j = \emptyset$  for  $i \neq j$
- 3.  $X = \bigcup_{i=1}^{k} B_i$

**Definition.** Let S(n,k) denote the number of partitions of an *n*-element set into k blocks. These are called the **Stirling numbers of the second kind**.

**Proposition** ((4.5) Recurrence for Stirling Numbers of the Second Kind).

$$S(n,k) = S(n-1,k-1) + k S(n-1,k)$$

Combinatorial proof. Consider how to place the element n:

• Place n in a new singleton block: contributes S(n-1, k-1)

• Place n into one of the k existing blocks: contributes  $k \cdot S(n-1,k)$ 

Thus,

$$S(n,k) = S(n-1,k-1) + k S(n-1,k)$$

**Theorem** ((Stirling Expansion)).

$$x^{n} = \sum_{k=0}^{n} k! S(n,k) \binom{x}{k} = \sum_{k=0}^{n} S(n,k)(x)_{k}$$

where  $(x)_k = k! \binom{x}{k}$  denotes the falling factorial.

**Theorem** ((Change of Basis via Stirling Numbers)).

$$\sum_{k=0}^{n} S(n,k) x^{k} = (x)_{n}, \quad \sum_{k=0}^{n} S(n,k) (x)_{k} = x^{n}$$

These identities describe the change of basis between monomials and falling factorials.

**Definition** ((Polynomial Vector Space)). Let V be the vector space of polynomials of degree  $\leq d$  over  $\mathbb{R}$ :

$$V = \left\{ \sum_{k=0}^{d} a_k x^k : a_0, \dots, a_d \in \mathbb{R} \right\}$$

Two common bases for V are:

$$B_1 = \{1, x, x^2, \dots, x^d\}$$
  
$$B_2 = \{1, (x)_1, (x)_2, \dots, (x)_d\}$$

**Theorem** ((Power Sum via Stirling Numbers)).

$$1^{n} + 2^{n} + \dots + k^{n} = \sum_{j=1}^{k} S(k,j) \cdot j! \cdot \binom{n+1}{j+1}$$

**Definition** ((Partition of an Integer)). A **partition** of *n* is a non-increasing sequence  $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge 0)$  such that

 $\sum_{i=1}^{\infty} \lambda_i = n \quad \text{(only finitely many terms are nonzero)}.$ 

We often write  $\lambda = (\lambda_1, \dots, \lambda_m)$  if  $\lambda_{m+1} = \lambda_{m+2} = \dots = 0$ .

**Notation 7.** If  $\lambda$  is a partition of n, we write:

 $|\lambda| = n \quad \text{or} \quad \lambda \vdash n$ 

The nonzero  $\lambda_i$ 's are called the **parts** of the partition.

**Definition** ((Length of a Partition)). If  $k = \#\{i : \lambda_i \neq 0\}$ , then k is called the **number of parts** of  $\lambda$ , denoted  $\ell(\lambda) = k$ .

**Remark.** We can write partitions using exponential notation: If  $\lambda$  has  $m_1$  parts equal to 1,  $m_2$  parts equal to 2, etc., then:

$$\lambda = 1^{m_1} 2^{m_2} 3^{m_3} \cdots$$

For example:

$$(3, 1, 1) = 1^2 3^1$$

**Definition** ((Young Diagram / Ferrers Shape)). Given a partition  $\lambda = (\lambda_1, \lambda_2, ...)$ , the **Young diagram** (or Ferrers shape) of  $\lambda$  is a left-justified array of boxes with  $\lambda_i$  boxes in row *i*.

*Example:* For  $\lambda = (3, 3, 2, 1, 1)$ , the diagram is:

**Definition** ((Conjugate Partition)). The **conjugate partition**  $\lambda'$  is the one corresponding to the transpose of the Young diagram of  $\lambda$ .

*Example:* The conjugate of (3, 3, 2, 1, 1) is  $\lambda' = (5, 3, 2)$ :

**Lemma.** The number of partitions of n with **largest part**  $\leq k$  is equal to the number of partitions of n with  $\leq k$  parts.

*Proof.* Taking the conjugate of a Young diagram reflects its rows and columns. So:

# parts = length of first column, largest part = length of first row

Conjugation defines a bijection between the two sets.

Theorem ((Euler)).

$$\sum_{n \ge 0} p(n)x^n = \frac{1}{(1-x)(1-x^2)(1-x^3)\cdots} = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

This is the generating function for the partition function p(n), which counts the number of integer partitions of n.



**Theorem** ((Euler – Partitions into Distinct Parts)). Let q(n) denote the number of partitions of n into **distinct parts**.

$$\sum_{n>0} q(n)x^n = \prod_{i=1}^{\infty} (1+x^i)$$

This is the generating function for partitions where each part appears at most once.

**Example.** For n = 5, the valid partitions into distinct parts are:

and the invalid ones (repeated parts) are:

**Remark.** This generating function converges by the ratio test. Each term  $1 + x^i$  corresponds to either including or excluding the part *i*.

**Theorem** ((Euler – Partitions into Odd Parts)). Let  $p_{odd}(n)$  be the number of partitions of n where each part is **odd**. Then:

$$\sum_{n \ge 0} p_{\text{odd}}(n) x^n = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i-1}} = \frac{1}{(1 - x)(1 - x^3)(1 - x^5)\cdots}$$

**Example.** For n = 5, the partitions into odd parts are:

**Remark.** This generating function runs over all odd indices 2i - 1, representing the inclusion of odd parts only.

**Theorem** ((Euler)). Let  $p_{odd}(n)$  be the number of partitions of n into odd parts, and let q(n) be the number of partitions of n into **distinct parts**. Then:

$$p_{\text{odd}}(n) = q(n)$$

*Proof.* We compare generating functions.

The generating function for partitions into odd parts is:

$$\sum_{n \ge 0} p_{\text{odd}}(n) x^n = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i-1}}$$

The generating function for partitions into distinct parts is:

$$\sum_{n \ge 0} q(n)x^n = \prod_{i=1}^{\infty} (1+x^i)$$

Now,

$$\prod_{i=1}^{\infty} (1+x^i) = \frac{(1-x^2)(1-x^4)(1-x^6)\cdots}{(1-x)(1-x^2)(1-x^3)(1-x^4)\cdots} = \frac{1}{(1-x)(1-x^3)(1-x^5)\cdots}$$

Hence,

$$\sum_{n \ge 0} q(n)x^n = \sum_{n \ge 0} p_{\text{odd}}(n)x^n \quad \Rightarrow \quad q(n) = p_{\text{odd}}(n)$$

**Definition.** Let  $p_{\leq k}(n)$  denote the number of partitions of n with at most k parts.

**Theorem.** The generating function for  $p_{\leq k}(n)$  is:

$$\sum_{n \ge 0} p_{\le k}(n) x^n = \frac{1}{(1-x)(1-x^2)\cdots(1-x^k)}$$

**Theorem** ((Euler's Pentagonal Number Theorem)).

$$\prod_{k=1}^{\infty} (1-x^k) = \sum_{n \in \mathbb{Z}} (-1)^n x^{\frac{n(3n-1)}{2}} = 1 + \sum_{n=1}^{\infty} (-1)^n \left( x^{\frac{n(3n-1)}{2}} + x^{\frac{n(3n+1)}{2}} \right)$$

**Corollary** ((Euler's Recurrence for p(n))).

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

where the indices are generalized pentagonal numbers  $\frac{k(3k\pm 1)}{2}$ , and signs alternate in pairs.

**Definition** (Indicator Function). For  $A \subseteq S$ , define the **indicator function**  $\chi_A : S \to \mathbb{Z}$  by

$$\chi_A(x) := \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

**Observation 1.** Let  $A, B \subseteq S$ . Then:

1. 
$$\sum_{x \in S} \chi_A(x) = |A|$$
  
2. 
$$\chi_A \cdot \chi_B = \chi_{A \cap B}$$
  
3. 
$$\chi_{A^c}(x) = 1 - \chi_A(x)$$

Proof of Inclusion-Exclusion (IEP). Define

$$F(x) = (1 - \chi_A(x))(1 - \chi_B(x)) = \chi_{A^c}(x)\chi_{B^c}(x)$$

Step 1. Note that

$$\chi_{A^{c} \cap B^{c}}(x) = \chi_{(A \cup B)^{c}}(x) = 1 - \chi_{A \cup B}(x)$$

Step 2. Expand:

$$F(x) = 1 - \chi_A(x) - \chi_B(x) + \chi_{A \cap B}(x)$$

Conclusion 1.

$$\sum_{x \in S} (1 - \chi_{A \cup B}(x)) = |S| - |A \cup B|$$

Conclusion 2.

$$\sum_{x \in S} (1 - \chi_A(x) - \chi_B(x) + \chi_{A \cap B}(x)) = |S| - |A| - |B| + |A \cap B|$$

**Theorem** (Inclusion-Exclusion Principle (General Version)). Suppose  $A_1, \ldots, A_n \subseteq S$ . Then

$$\left|\bigcup_{i=1}^{n} A_{i}\right| = \sum_{j=1}^{n} (-1)^{j+1} \sum_{J \subseteq [n], |J|=j} \left|\bigcap_{i \in J} A_{i}\right|$$

Example.

$$= |A_1| + \dots + |A_n| - |A_1 \cap A_2| - \dots - |A_{n-1} \cap A_n| + |A_1 \cap A_2 \cap A_3| + \dots + |A_{n-2} \cap A_{n-1} \cap A_n|$$

Theorem (Inclusion-Exclusion Principle (Complement Form)).

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{j=1}^{n} (-1)^{j+1} \sum_{I \subseteq [n], |I|=j} \left| \bigcap_{i \in I} A_{i} \right|$$
$$\Rightarrow \left| S - \bigcup_{i=1}^{n} A_{i} \right| = \sum_{j=0}^{n} (-1)^{j} \sum_{I \subseteq [n], |I|=j} \left| \bigcap_{i \in I} A_{i} \right|$$

**Definition** (Euler's Totient Function). Let  $n \in \mathbb{Z}_{\geq 0}$ . Euler's totient function is the map  $\varphi : \mathbb{Z}_{\geq 0} \to \mathbb{Z}$  such that  $\varphi(n) = \#\{x : 1 \leq x \leq n \text{ and } \gcd(x, n) = 1\}$ 

#### Example.

$$\varphi(12) = (1 - \frac{1}{2})(1 - \frac{1}{3}) \cdot 12 = 12 \cdot \frac{1}{2} \cdot \frac{2}{3} = 4$$

The numbers relatively prime to 12 in [1, 12] are:

1, 5, 7, 11

**Theorem** (Euler's Product Formula). Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  be the prime factorization of n. Then

$$\varphi(n) = n \prod_{i=1}^{k} \left( 1 - \frac{1}{p_i} \right)$$

**Definition** (Derangement). A derangement of [n] is a permutation

$$w = w(1) \dots w(n) \in S_n$$
 such that  $w(i) \neq i$  for all  $i \in [n]$ 

(i.e., a permutation with no fixed points).

Notation 8. Let d(n) denote the number of derangements of [n].

Theorem (Derangement Formula).

$$d(n) = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right)$$

Example.

$$d(3) = 3! \left( 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \right) = 3! \left( \frac{1}{3} \right) = 2$$

*Proof.* Let  $S = \{ all permutations \}, and let$ 

 $A_i = \{\text{permutations where } i \text{ is a fixed point}\}\$ 

Then  $|A_i| = (n-1)!$ , and for any  $I \subseteq [n]$ ,

$$\left|\bigcap_{i\in I} A_i\right| = (n-|I|)!$$

By the inclusion-exclusion principle:

$$\left| S - \bigcup_{i=1}^{n} A_{i} \right| = \sum_{j=0}^{n} (-1)^{j} \sum_{I \subseteq [n], |I|=j} \left| \bigcap_{i \in I} A_{i} \right| = \sum_{j=0}^{n} (-1)^{j} {n \choose j} (n-j)! = n! \sum_{j=0}^{n} \frac{(-1)^{j}}{j!}$$

**Definition** (Derangement). A **derangement** of [n] is a permutation

 $w = w(1) \dots w(n) \in S_n$  such that  $w(i) \neq i$  for all  $i \in [n]$ 

(i.e., a permutation with no fixed points).

Notation 9. Let d(n) denote the number of derangements of [n].

Theorem (Derangement Formula).

$$d(n) = n! \left( \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right)$$

Example.

$$d(3) = 3! \left( 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} \right) = 3! \left( \frac{1}{3} \right) = 2$$

*Proof.* Let  $S = \{ all permutations \}, and define$ 

 $A_i = \{\text{permutations where } i \text{ is a fixed point}\}\$ 

Then  $|A_i| = (n-1)!$ , and for any  $I \subseteq [n]$ ,

$$\left|\bigcap_{i\in I} A_i\right| = (n - |I|)!$$

Applying inclusion-exclusion:

$$\left| S - \bigcup_{i=1}^{n} A_{i} \right| = \sum_{j=0}^{n} (-1)^{j} \sum_{I \subseteq [n], |I|=j} \left| \bigcap_{i \in I} A_{i} \right| = \sum_{j=0}^{n} (-1)^{j} {n \choose j} (n-j)!$$
$$= n! \sum_{j=0}^{n} \frac{(-1)^{j}}{j!}$$

**Theorem** (Derangement Recurrence). The number of derangements satisfies the recurrence:

$$d(n) = (n-1)(d(n-1) + d(n-2))$$

*Proof.* Consider the position of 1 in a derangement of [n]. It cannot map to 1, so suppose w(1) = k for some  $k \neq 1$ . There are n - 1 such choices.

Now consider two cases:

- If w(k) = 1, then we have fixed a 2-cycle  $(1 \ k)$ , and the rest of the permutation is a derangement of n-2 elements.
- If  $w(k) \neq 1$ , then we can remove 1 and fix k, obtaining a derangement of n-1 elements.

So for each of the n-1 values of k, we get

$$d(n) = (n-1)(d(n-1) + d(n-2))$$

**Definition** (Linear Homogeneous Recurrence). A sequence  $h = (h_0, h_1, h_2, ...)$  satisfies a **linear homogeneous recurrence of degree** d if there exist constants  $a_0, a_1, ..., a_d \in \mathbb{R}$  (not all zero) such that

$$\forall n \ge d, \quad a_0 h_n + a_1 h_{n-1} + \dots + a_d h_{n-d} = 0$$

We may assume without loss of generality that  $a_d \neq 0$  and  $a_0 = 1$ . To generate the sequence, we need the first *d* terms:

$$h_d + a_1 h_{d-1} + \dots + a_d h_0 = 0$$

Definition. Let

$$V := \{h = (u_n) : h \text{ satisfies } (*) \text{ for any initial condition} \}$$

**Lemma.** V is a vector space over  $\mathbb{C}$ .

*Proof.* Let  $h, g \in V$  and  $\alpha, \beta \in \mathbb{C}$ . Then  $\alpha h + \beta g \in V$ , since linear combinations of solutions to a linear homogeneous recurrence are again solutions.

Lemma.

$$\dim(V) = d$$

**Definition** (Characteristic Polynomial). The polynomial

$$x^{d} + a_1 x^{d-1} + \dots + a_d = 0$$

is called the **characteristic polynomial** of the recurrence.

**Remark.** Suppose the characteristic polynomial has d distinct roots  $r_1, \ldots, r_d \in \mathbb{C}$ .

**Example.** Consider the recurrence

$$f_n - f_{n-1} - f_{n-2} = 0$$

 $x^2 - x - 1 = 0$ 

 $x = \frac{1 \pm \sqrt{5}}{2}$ 

Its characteristic polynomial is

The roots are

**Lemma.** Let 
$$r_0$$
 be a root of the characteristic polynomial. Then the sequence  $h_n = r_0^n$  is in V, i.e., it is a solution to the recurrence.

*Proof.* For all  $n \geq d$ ,

$$r_0^n + a_1 r_0^{n-1} + \dots + a_d r_0^{n-d} = 0$$

because the characteristic polynomial vanishes at  $r_0$ .

**Lemma.** The sequences  $(r_1^n), \ldots, (r_d^n)$  are linearly independent.

**Corollary.** These sequences form a basis of V.

**Theorem.** If the characteristic polynomial has d distinct roots  $r_1, \ldots, r_d \in \mathbb{C}$ , then every solution to the recurrence is of the form

$$h_n = c_1 r_1^n + \dots + c_d r_d^n$$
 for some  $c_1, \dots, c_d \in \mathbb{C}$ 

**Lemma.** Suppose  $r_1$  is a root of the characteristic polynomial with multiplicity m. Then the sequences

$$(r_1^n), (nr_1^n), \ldots, (n^{m-1}r_1^n)$$

are all solutions to the recurrence.

*Proof.* Let  $P(x) = x^d + a_1 x^{d-1} + \cdots + a_d$  be the characteristic polynomial. Since  $r_1$  is a root of multiplicity m, we can write

$$P(x) = (x - r_1)^m Q(x)$$

where Q(x) is a polynomial of degree d - m and  $Q(r_1) \neq 0$ .

Then,

$$\frac{d}{dx}P(x) = m(x-r_1)^{m-1}Q(x) + (x-r_1)^m Q'(x) = (x-r_1)^{m-1} \left(mQ(x) + (x-r_1)Q'(x)\right)$$

So  $r_1$  is a root of multiplicity m-1 of P'(x), and this pattern continues.

Now consider

$$r_1 \frac{d}{dr} \left( r^{n-d} P(r) \right) = (n-d) r_1^{n-d} P(r_1) + r_1^n \cdot P'(r_1) = 0$$

so for  $n \geq d$ ,

$$nr_1^n + a_1(n-1)r_1^{n-1} + \dots + a_d(n-d)r_1^{n-d} = 0$$

hence  $(nr_1^n)$  is a solution, and similarly for higher powers of n.

**Theorem.** Suppose  $r_i$  is a root of multiplicity  $m_i$ . Then any solution to the recurrence is of the form

$$h_n = p_1(n)r_1^n + \dots + p_k(n)r_k^n$$

where each  $p_i(n)$  is a polynomial of degree  $\leq m_i - 1$ .

Example (Fibonacci via Generating Functions). Consider the recurrence

$$f_n = f_{n-1} + f_{n-2}$$
, for  $n \ge 2$ ,  $f_0 = 0$ ,  $f_1 = 1$ 

Define the generating function

2

$$F(x) = \sum_{n \ge 0} f_n x^n$$

Note:

$$\sum_{n\geq 2} f_n x^n = \sum_{n\geq 2} (f_{n-1} + f_{n-2}) x^n = x \sum_{n\geq 2} f_{n-1} x^{n-1} + x^2 \sum_{n\geq 2} f_{n-2} x^{n-2}$$

So we get:

$$F(x) - f_0 - f_1 x = x(F(x) - f_0) + x^2 F(x)$$

Plug in  $f_0 = 0, f_1 = 1$ :

$$F(x) - x = xF(x) + x^2F(x) \Rightarrow F(x)(1 - x - x^2) = x \Rightarrow F(x) = \frac{x}{1 - x - x^2}$$

Factor the denominator:

$$F(x) = \frac{x}{(1-r_1x)(1-r_2x)}$$
 where  $r_1 = \frac{1+\sqrt{5}}{2}$ ,  $r_2 = \frac{1-\sqrt{5}}{2}$ 

Using partial fractions:

$$F(x) = \frac{\alpha}{1 - r_1 x} + \frac{\beta}{1 - r_2 x}$$

Solve:

$$\alpha + \beta = 0, \quad -\alpha r_2 - \beta r_1 = 1 \Rightarrow \alpha = \frac{1}{\sqrt{5}}, \quad \beta = -\frac{1}{\sqrt{5}}$$

So:

$$F(x) = \frac{1}{\sqrt{5}} \left( \frac{1}{1 - r_1 x} - \frac{1}{1 - r_2 x} \right)$$

Extracting coefficients:

$$f_n = [x^n]F(x) = \frac{1}{\sqrt{5}}(r_1^n - r_2^n)$$

Theorem. The following are equivalent:

1. The sequence  $(h_n)$  satisfies a linear recurrence of order d:

$$h_n + a_1 h_{n-1} + \dots + a_d h_{n-d} = 0 \quad \text{for all } n \ge d, \quad a_d \ne 0$$

2. The generating function

$$H(x) = \sum_{n \ge 0} h_n x^n$$

is a rational function:

$$H(x) = \frac{F(x)}{G(x)}$$

where  $G(x) = 1 + a_1 x + \dots + a_d x^d$ , and deg F(x) < d.

**Observation 2.** If the characteristic polynomial has roots  $r_1, \ldots, r_k$  with multiplicities  $m_1, \ldots, m_k$ , then

$$G(x) = \prod_{i=1}^{k} (1 - r_i x)^{m_i}$$

Proof of Theorem. (1)  $\Rightarrow$  (2): From the recurrence,

$$\sum_{n \ge d} h_n x^n + a_1 \sum_{n \ge d} h_{n-1} x^n + \dots + a_d \sum_{n \ge d} h_{n-d} x^n = 0$$

Shift indices appropriately:

$$\Rightarrow \left(H(x) - \sum_{n=0}^{d-1} h_n x^n\right) + a_1 x \left(H(x) - \sum_{n=0}^{d-2} h_n x^n\right) + \dots + a_d x^d H(x) = 0$$

Group terms:

$$H(x) \cdot G(x) - F(x) = 0 \quad \Rightarrow \quad H(x) = \frac{F(x)}{G(x)}$$

where deg  $F(x) \le d-1$ . (2)  $\Rightarrow$  (1): Suppose  $H(x) = \frac{F(x)}{G(x)}$  with  $G(x) = 1 + a_1 x + \dots + a_d x^d$ . Then:

$$H(x) \cdot G(x) = F(x)$$

Now take the coefficient of  $x^n$  for  $n \ge d$ :

$$h_n + a_1 h_{n-1} + \dots + a_d h_{n-d} = 0$$
 for all  $n \ge d$ 

since deg  $F(x) \leq d-1$  implies the higher coefficients vanish.

**Corollary.** Let  $r_1, \ldots, r_k$  be the roots of the characteristic polynomial with multiplicities  $m_1, \ldots, m_k$ . Then the general term of the sequence  $(h_n)$  satisfies

$$h_n = \sum_{i=1}^k p_i(n) r_i^n$$

where deg  $p_i(n) < m_i$ .

*Proof.* From the generating function approach, we have

$$H(x) = \frac{F(x)}{\prod_{i=1}^{k} (1 - r_i x)^{m_i}}$$

Using partial fractions, we write

$$H(x) = \sum_{i=1}^{k} \left( \frac{\lambda_{i1}}{1 - r_i x} + \frac{\lambda_{i2}}{(1 - r_i x)^2} + \dots + \frac{\lambda_{im_i}}{(1 - r_i x)^{m_i}} \right)$$

By Newton's binomial theorem:

$$[x^{n}]\frac{1}{(1-r_{i}x)^{j}} = \binom{n+j-1}{j-1}r_{i}^{n}$$

Taking coefficients of  $x^n$ , we obtain

$$h_n = \sum_{i=1}^k \left( \sum_{j=1}^{m_i} \lambda_{ij} \binom{n+j-1}{j-1} \right) r_i^n$$

Define  $p_i(n) := \sum_{j=1}^{m_i} \lambda_{ij} \binom{n+j-1}{j-1}$ , a polynomial of degree  $< m_i$ . Then:

$$h_n = \sum_{i=1}^k p_i(n) r_i^n$$

#### 1 Catalan Numbers

**Definition** (Catalan Numbers (Euler)). The Catalan number  $C_n$  is the number of triangulations of a convex polygon with n + 2 sides.

Let  $P_{n+2}$  be a convex polygon with n+2 sides (e.g.,  $P_5$  is a pentagon).

A triangulation is a collection of diagonals that do not cross except at their endpoints and which partition  $P_{n+2}$  into triangles.

Theorem. The Catalan numbers satisfy the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k \cdot C_{n-k} \quad \text{with } C_0 = 1$$

**Definition** (Ballot Sequence). A **ballot sequence** of length 2n is a sequence  $(a_1, \ldots, a_{2n})$  with each  $a_i \in \{\pm 1\}$ , such that exactly n of the  $a_i$  are +1, and n are -1, and the partial sums are nonnegative:

$$\sum_{i=1}^{k} a_i \ge 0 \quad \text{for all } 1 \le k \le 2n.$$

**Remark** (Ballot Interpretation). This arises from the classic ballot problem:

- Two candidates, A and B, receive n votes each.
- Voter preferences are revealed one at a time.
- Encode each vote as +1 for A and -1 for B.
- The condition that A never trails B corresponds exactly to the partial sum condition above.

**Theorem** (Probability of a Random Ballot Sequence). The probability that a uniformly random sequence of n + 1's and n - 1's is a ballot sequence is

$$\frac{C_n}{\binom{2n}{n}} = \frac{1}{n+1},$$

where  $C_n = \frac{1}{n+1} \binom{2n}{n}$  is the *n*-th Catalan number.

**Definition** (Dyck Path). A **Dyck path** of length 2n is a lattice path from (0,0) to (2n,0) consisting of steps (1,1) (up-steps) and (1,-1) (down-steps), such that the path never goes below the x-axis.

**Example.** For n = 3, one such Dyck path is illustrated as:

$$(1,1), (1,-1), (1,-1), (1,1), (1,-1), (1,1)$$

or encoded as the sequence:

```
1, 1, -1, -1, 1, -1
```

**Theorem.** The number of Dyck paths of length 2n, denoted  $D_n$ , is equal to the number of ballot sequences of length 2n, and is given by the Catalan number:

$$D_n = C_n = \frac{1}{n+1} \binom{2n}{n}.$$

**Theorem.** The *n*-th Catalan number is given by

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n}.$$

**Definition** (Binary Tree). A **binary tree** on *n* vertices is an element of  $\mathcal{B}_n$ , where  $\mathcal{B}_n$  is defined recursively as follows:

- 1.  $\mathcal{B}_0 = \{\varnothing\}$
- 2.

$$\mathcal{B}_n = \left\{ \underbrace{v}_{(T_1)} : (T_1, T_2) \in \mathcal{B}_k \times \mathcal{B}_\ell, \ k + \ell = n \right\}$$

Here, v is called the *root*.

**Theorem.** The number of binary trees on n+1 vertices is given by the Catalan number  $C_n$ .

*Proof (1).* We have  $|\mathcal{B}_0| = 1$ , and the recursive relation:

$$|\mathcal{B}_n| = \sum_{k+\ell=n} |\mathcal{B}_k| \cdot |\mathcal{B}_\ell|$$

This recurrence defines the Catalan numbers.

*Proof (2).* Let  $\mathcal{T}_{n+2}$  be the set of triangulations of an (n+2)-gon. There is a bijection between such triangulations and binary trees with n+1 vertices, proving that the number of such binary trees is  $C_n$ .  $\Box$ 

**Definition** (Plane or Catalan Tree). A **plane tree** P on n vertices is an element of the set  $\mathcal{P}_n$ , defined recursively as follows:

- 1.  $\mathcal{P}_1 = \{v\}$ , where v is the root.
- 2. For n > 1,

$$\mathcal{P}_n = \left\{ \begin{array}{cc} & & \\ & & \\ \hline (P_1) & & \\ & & \\ \hline (P_1) & & \\ \end{array} \right\} : P_1, \dots, P_m \in \mathcal{P}_{k_1}, \dots, \mathcal{P}_{k_m}, \text{ with } \sum_{i=1}^m k_i = n-1 \right\}$$

That is, a plane tree consists of a root joined to an ordered sequence of subtrees  $P_1, \ldots, P_m$  whose total number of vertices (excluding the root) is n-1. The *order* of the subtrees matters.

**Theorem.** The number of plane trees with n + 1 vertices is equal to the *n*th Catalan number  $C_n$ .

### 2 Exponential Generating Functions

**Definition** (Exponential Generating Function). Given a sequence  $a_0, a_1, a_2, \ldots$ , the *exponential generating* function (EGF) associated to this sequence is defined by

$$F(x) = \sum_{n \ge 0} \frac{a_n}{n!} x^n.$$

**Example.** Let  $a_n = n!$ . Then the ordinary generating function (OGF) is

$$G(x) = \sum_{n \ge 0} n! x^n,$$

whereas the exponential generating function is

$$F(x) = \sum_{n \ge 0} x^n = \frac{1}{1 - x}.$$

**Example.** Let D(n) denote the number of derangements of [n]. Then

$$D(n) = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

Thus the exponential generating function is

$$F(x) = \sum_{n \ge 0} \left( n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} \right) \frac{x^n}{n!} = \sum_{n \ge 0} \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^n.$$

Rewriting by interchanging the summation order:

$$F(x) = \sum_{k \ge 0} \frac{(-1)^k}{k!} \sum_{n \ge k} x^n = \sum_{k \ge 0} \frac{(-1)^k}{k!} \cdot \frac{x^k}{1-x} = \frac{1}{1-x} \sum_{k \ge 0} \frac{(-x)^k}{k!} = \frac{e^{-x}}{1-x}.$$

**Definition** (Structure). A structure is a function  $\alpha$ : {finite sets}  $\rightarrow$  {finite sets} such that if X, Y are finite sets and |X| = |Y|, then

$$|\alpha(X)| = |\alpha(Y)|.$$

**Definition** (Exponential Generating Function of a Structure). Let  $\alpha$  be a structure. The exponential generating function (EGF) associated to  $\alpha$  is defined by

$$F_{\alpha}(x) = \sum_{n \ge 0} \frac{a_n x^n}{n!},$$

where  $a_n = |\alpha(X)|$  for any set X of size n.

**Example** (Trivial Structure). Define the structure  $\mathcal{E}(X) := \{*\}$  for all finite sets X. That is,  $\mathcal{E}(X)$  assigns a singleton set to every input set X.

Then  $|\mathcal{E}(X)| = 1$  for all X, so the exponential generating function is

$$F_{\mathcal{E}}(x) = \sum_{n \ge 0} \frac{x^n}{n!} = e^x.$$

**Example** (Trivial Structure Minus the Empty Set). Define  $\overline{\mathcal{E}}(X)$  as

$$\overline{\mathcal{E}}(X) := \begin{cases} \varnothing & \text{if } X = \varnothing, \\ \{*\} & \text{if } X \neq \varnothing. \end{cases}$$

Then  $a_n = |\overline{\mathcal{E}}(X)| = 1$  for  $n \ge 1$ , and  $a_0 = 0$ . The exponential generating function is

$$F_{\overline{\mathcal{E}}}(x) = \sum_{n \ge 1} \frac{x^n}{n!} = e^x - 1.$$

**Definition** (Disjoint Union of Structures). Given two structures  $\alpha$  and  $\beta$ , define their **disjoint union** structure  $\alpha \sqcup \beta$  by

$$(\alpha \sqcup \beta)(X) := \alpha(X) \sqcup \beta(X).$$

Then

$$|(\alpha \sqcup \beta)(X)| = |\alpha(X)| + |\beta(X)|$$

Hence,  $\alpha \sqcup \beta$  is a structure.

**Proposition** (Addition Principle for EGFs). Let  $\alpha$  and  $\beta$  be structures with exponential generating functions

$$F_{\alpha}(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}, \qquad F_{\beta}(x) = \sum_{n \ge 0} b_n \frac{x^n}{n!}.$$

Then the EGF of the disjoint union structure  $\alpha \sqcup \beta$  is

$$F_{\alpha \sqcup \beta}(x) = F_{\alpha}(x) + F_{\beta}(x).$$

**Theorem** (Multiplication Principle for EGFs). Let  $\alpha$  and  $\beta$  be two structures, and define the product structure  $\alpha \times \beta$ . Then their exponential generating function satisfies

$$F_{\alpha \times \beta}(x) = F_{\alpha}(x) \cdot F_{\beta}(x),$$

where

$$F_{\alpha}(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}, \quad F_{\beta}(x) = \sum_{n \ge 0} b_n \frac{x^n}{n!}, \quad F_{\alpha \times \beta}(x) = \sum_{n \ge 0} c_n \frac{x^n}{n!}.$$

Then the coefficients satisfy

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}.$$

**Definition** (Product structure). Given two structures  $\alpha$  and  $\beta$ , define their *product structure* by

$$(\alpha \times \beta)(X) := \{(\alpha(A), \beta(B)) : X = A \sqcup B\}.$$

This can be extended recursively:

$$\alpha_1 \times \alpha_2 \times \cdots \times \alpha_n := \alpha_1 \times (\alpha_2 \times \cdots \times \alpha_n),$$

or more generally:

$$\alpha_1 \times \cdots \times \alpha_\ell := \left\{ (\alpha_1(A_1), \dots, \alpha_\ell(A_\ell)) : X = A_1 \sqcup \cdots \sqcup A_\ell \right\}.$$

**Definition** (Structure equivalence). We say  $\alpha \equiv \beta$  if they have the same cardinalities, i.e.,

 $|\alpha(X)| = |\beta(X)|$  for all finite sets X,

which implies

$$F_{\alpha}(x) = F_{\beta}(x).$$

**Example.** Define  $\alpha(X)$  to be the set of surjective functions  $f: X \to [k]$ . Then

$$F_{\alpha}(x) = \sum_{n \ge 0} S(n,k)k! \cdot \frac{x^n}{n!}$$

where S(n,k) is the Stirling number of the second kind.

Define

$$\overline{E}(X) := \begin{cases} \{*\} & \text{if } X \neq \emptyset \\ \emptyset & \text{if } X = \emptyset \end{cases}$$

Then  $\alpha = \overline{E} \times \cdots \times \overline{E}$  (k times), with

$$\overline{E} \times \cdots \times \overline{E} = \{(*_{A_1}, \dots, *_{A_k}) : X = A_1 \sqcup \cdots \sqcup A_k\}$$

and

$$F_{\overline{E}}(x) = e^x - 1 \quad \Rightarrow \quad F_{\alpha}(x) = (e^x - 1)^k$$

Thus,

$$F_{S(\cdot,k)}(x) = \frac{1}{k!}(e^x - 1)^k$$

**Example.** Define B(X) to be the set of unordered partitions of X. Then

$$B(X) = S(X,0) \sqcup S(X,1) \sqcup \cdots$$

Hence,

$$F_B(x) = \sum_{k \ge 0} F_{S(\cdot,k)}(x) = \sum_{k \ge 0} \frac{1}{k!} (e^x - 1)^k = e^{e^x - 1}$$

**Example.** Let  $\mathcal{C}(X,k) = \{\omega \in S_X : \omega \text{ has } k \text{ cycles}\}$ . Then the exponential generating function is

$$F_{\mathcal{C}(\cdot,k)}(x) = \sum_{n\geq 0} \frac{c(n,k)}{n!} x^n$$

where c(n, k) is the number of permutations of n elements with k cycles.

- For k = 1:  $F_{\mathcal{C}(\cdot,1)}(x) = \sum_{n \ge 1} \frac{x^n}{n} = \log\left(\frac{1}{1-x}\right).$
- More generally, define

$$\mathcal{C}_o(X,k) := \{ (C_1, \dots, C_k) : \omega = C_1 \cdots C_k \in S_X \}$$

as ordered k-tuples of disjoint cycles. Then  $\mathcal{C}_o \cong \mathcal{C}(\cdot, 1)^k$  and

$$F_{\mathcal{C}_o(\cdot,k)}(x) = \left(\log\left(\frac{1}{1-x}\right)\right)^k$$

 $\mathbf{SO}$ 

$$F_{\mathcal{C}(\cdot,k)}(x) = \frac{1}{k!} \left( \log\left(\frac{1}{1-x}\right) \right)^k.$$

**Definition** (Partition Structure). Given a structure  $\alpha$ , we define the partition structure  $\Pi_{\alpha}(X)$  as

$$\Pi_{\alpha}(X) := \left\{ \{S_1, \dots, S_k\} : X = \bigsqcup_{i=1}^k X_i, \ S_i \in \alpha(X_i) \right\},\$$

where the set  $\{S_1, \ldots, S_k\}$  is unordered.

**Remark.** This structure is related to the product structure; it collects ways to partition X and apply structure  $\alpha$  on each part. Weak compositions are closely related.

**Example.** Let  $\alpha = \mathcal{E}$  be the trivial structure:

$$\mathcal{E}(X) := \{*\} \text{ for all sets } X.$$

Then

$$\Pi_{\mathcal{E}}(X) = \left\{ \{S_1, \dots, S_k\} : X = \bigsqcup_{i=1}^k X_i, \ S_i = * \right\} \cong \left\{ \{X_1, \dots, X_k\} : X = \bigsqcup X_i \right\} = \mathcal{B}(X),$$

the set of unordered partitions of X.

**Example.** Let  $\alpha = \mathcal{C}(\cdot, 1)$ , the structure of a single cycle on a finite set. Then

$$\Pi_{\alpha}(X) = \left\{ \{S_1, \dots, S_k\} : X = \bigsqcup X_i, \ S_i \in \mathcal{C}(X_i, 1) \right\}.$$

This corresponds to choosing a cycle permutation for each part of the partition.

**Definition** (Restricted Structure). Given a structure  $\alpha$ , define the restricted structure  $\overline{\alpha}$  by

$$\overline{\alpha}(X) := \begin{cases} \alpha(X) & \text{if } X \neq \emptyset, \\ \emptyset & \text{if } X = \emptyset. \end{cases}$$

The exponential generating function of  $\overline{\alpha}$  is related to that of  $\alpha$  by

$$F_{\overline{\alpha}}(x) = F_{\alpha}(x) - a_0.$$

**Theorem** (Exponential Formula). Let  $\alpha$  be a structure and  $\Pi_{\alpha}$  the associated partition structure. Then

$$F_{\Pi_{\alpha}}(x) = \exp(F_{\overline{\alpha}}(x)) = \sum_{k \ge 0} \frac{F_{\overline{\alpha}}(x)^k}{k!}.$$

**Theorem** (Heuristic Exponential Principle). Let  $a_n$  be the number of ways to perform a certain task on an *n*-element set with  $a_0 = 0$ . Let  $h_n$  be the number of ways to partition [n] into an arbitrary number of blocks and perform the task on each block. Then

$$A(x) := \sum_{n \ge 0} a_n \frac{x^n}{n!}, \qquad H(x) := \sum_{n \ge 0} h_n \frac{x^n}{n!},$$

and the relationship between the two is

$$H(x) = \exp(A(x)).$$

**Example** (Exponential Generating Function for Derangements). The exponential generating function for the number of derangements is

$$F_D(x) = \frac{e^{-x}}{1-x}.$$

Define the structure  $\alpha$  by

$$\alpha(X) := \begin{cases} C(X,1) & \text{if } |X| \ge 2, \\ \emptyset & \text{if } |X| = 0 \text{ or } 1, \end{cases}$$

where C(X, 1) denotes permutations with one cycle (i.e., cyclic permutations), and this ensures all cycles have length at least 2.

Claim:  $\Pi_{\alpha} = D$ , where D denotes the derangement structure, and

$$F_D(x) = \exp(F_{\overline{\alpha}}(x)).$$

We compute:

$$F_{\overline{\alpha}}(x) = F_{C(\cdot,1)}(x) - x$$
  
=  $\log\left(\frac{1}{1-x}\right) - x$ ,  
$$F_{D}(x) = \exp(F_{\overline{\alpha}}(x)) = \exp\left(\log\left(\frac{1}{1-x}\right) - x\right) = \frac{e^{-x}}{1-x}$$

| <b>Proposition</b> (OGFs vs EGFs).                                      |                                                                                                 |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| OGFs (Ordinary Generating Functions)                                    | EGFs (Exponential Generating Functions)                                                         |  |  |  |
| Structures on <i>unordered</i> collections.                             | Structures on <i>ordered</i> collections.                                                       |  |  |  |
| $f(x) = \sum_{n \ge 0} a_n x^n$                                         | $F(x) = \sum_{n \ge 0} \frac{a_n x^n}{n!}$                                                      |  |  |  |
| $g(x) = \sum_{n \ge 0} b_n x^n$                                         | $G(x) = \sum_{n \ge 0} \frac{b_n x^n}{n!}$                                                      |  |  |  |
| Product: $\sum_{n\geq 0} \left( \sum_{k=0}^{n} a_k b_{n-k} \right) x^n$ | Product: $\sum_{n \ge 0} \left( \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \right) \frac{x^n}{n!}$ |  |  |  |
| Example:                                                                | Example:                                                                                        |  |  |  |
| Putting $n$ indistinguishable balls into 2 unlabeled                    | Putting $n$ labeled balls into 2 labeled bins.                                                  |  |  |  |
| $f(x) = g(x) = \frac{1}{1 - x}$                                         | $F(x) = G(x) = e^x$                                                                             |  |  |  |
| Product: $\frac{1}{(1-x)^2}$                                            | Product: $e^{2x}$                                                                               |  |  |  |

**Problem 2.** Let  $h_n$  be the number of *n*-digit numbers where every digit is odd and 1 and 3 occur an even number of times.

We define the exponential generating function H(x):

$$H(x) = \sum_{n \ge 0} \frac{h_n x^n}{n!}$$

Let

$$d(x) = \begin{cases} x^n & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Let  $F = d(x)^3$  (product over the digits 1, 3, 5, 7, 9).

$$F = \left(\frac{e^x + e^{-x}}{2}\right)^3 = \frac{1}{8} \left(e^x + e^{-x}\right)^3$$
$$= \frac{1}{8}e^x \left(e^x + 2 + e^{-x}\right) = \frac{1}{8}\left(\frac{5^n}{n!} + \frac{2 \cdot 3^n}{n!} + \frac{1}{n!}\right) \Rightarrow h_n = 5^n + 2 \cdot 3^n + 1$$

**Problem 3.** Let  $g_n$  be the number of multisets over  $\{1, 3, 5, 7, 9\}$  such that the elements 1 and 3 occur an even number of times.

Let  $\mathbb{M}$  be the set of multisets with elements in  $\{0, 1, 2, ...\}$ , i.e.,  $\mathbb{M} \subseteq \mathbb{N}^r$ . Define  $\operatorname{wt}(n) = \sum n_i$ .

$$g(x) = \left(1 + x^2 + x^4 + \dots\right)^2 \left(1 + x + x^2 + \dots\right)^3 = \frac{1}{(1 - x^2)^2} \cdot \frac{1}{(1 - x)^3}$$