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Counting Principles

Definition (Injection). A function f: A — B is an injection if for all a,a’ € A, a # o’ implies f(a) # f(a').

Definition (Surjection). A function f: A — B is a surjection if for all b € B, there exists a € A such that

fla) =b.
Definition (Bijection). A function f: A — B is a bijection if it is both injective and surjective.

Definition (Inverse Function). A function g : B — A is called the inverse of f: A — B if
gof=idy and fog=idp

In this case, g = f~1.
Theorem. A function f: A — B is a bijection if and only if it has an inverse.
Definition (Cardinality). The cardinality of a finite set A is the number of elements in A.

Proposition (Cardinality of Equivalent Sets). If A = B (i.e., there exists a bijection A — B), then |A| = |B|.

Definition (Disjoint Sets). Sets A and B are disjoint if AN B = .

Proposition (Addition Principle). If A and B are disjoint, then
|AU B| = [A] +|B|
General version: If A, ..., A, are disjoint, then

Ay U Ao U---UA,| = |Ay] + |Ag| + - + | Ay



Problem 1. How many squares are in the figure below?
Let S = {all squares in the figure}, Sy = {k x k squares}

Then,
S=51USUSs

By the Addition Principle,
IS| = [S1| +[S2| + |93 =9+4+1=14

Definition (Cartesian Product). The Cartesian product of sets A and B is defined as

Ax B:={(a,b):a€ A, be B}

Proposition (Multiplication Principle).
Ax B|=|A] - |B]
More generally, for sets Ay, ..., Ay,

|Ay X Ag x -+ X Ay| = |Ay] - | Az -+ | Ay

Notation 1.
[n] :={1,2,...,n}

Definition (Permutation). A permutation of a set A is a linear ordering of the elements of A, or equiva-
lently, a bijection
f:[n] = A where n:=|A]

Let S4 denote the set of permutations of A.

Notation 2. The factorial of n is defined as
nl:=nn—-1)n-2)---1

Example: 3!=3-2-1=6

Theorem. If A is a finite set with |A| = n, then the number of permutations of A is

|SA| =n!



Definition (Partial Permutation). Let A be an n-element set. A partial permutation of A is a linear
ordering of k elements of A.
Equivalently, partial permutations correspond to injections

fik]—= A

Theorem. The number of injections [k] < A is
nn—1)n-2)---(n—k+1) = (n)

where (n) is the falling factorial.

Proposition (Subtraction Principle). Let A C B. Then the size of the set difference is

[B\ Al = [B| - 4]

Proposition (Division Principle, Version 1). Suppose f : A — B is a d-to-1 map. That is,
vbe B, |f'(b)|=d where f71(b)={a€ A: f(a) =1}

Then,
Al

Bl =21
Bl =1

Definition (Circular Permutation). A circular permutation of a set A is an arrangement of the elements
of A around a circle such that rotations of the same arrangement are considered the same (but not reflections).

Definition (Alphabet and Word). An alphabet A is a finite set whose elements are called letters.
A word in A is a sequence of letters from A (including the empty word).
The number of letters in a word is called the length of the word.

Proposition. The number of words of length k over an n-letter alphabet is

nk

Proposition. The number of subsets of an n-element set A is 2. That is,

Pl =24



Notation 3. Let

(1) = mom

Proposition. The number of words of length n over the alphabet A = {0,1} that contain exactly k 1’s

(and n — k 0’s) is
n
k

Definition (Lattice Path). A lattice path L from (0,0) to (m,n) is a sequence (vg,v1,...,v;) such that

vo = (0,0), wvx=(m,n), and v;41 —v; €{(1,0),(0,1)} foralli=0,...,k—1.

Proposition. The number of lattice paths from (0,0) to (m,n) is
m+n
n

Proposition.

Proof.
2" =

bl
HM§
(=)

This identity follows from the binomial expansion of (1 + 1)". O

()= =Go)

Proposition (Pascal’s Recurrence).

Pascal’s Triangle:



Proposition (Binomial Convolution Identity).
{+m Ny m
(") =200

Proof. The left-hand side counts the number of ways to choose n elements from A U B where |A| = ¢ and
|B| = m.

The right-hand side breaks this down by choosing k elements from A and n — k from B, summing over
all possible k. O
Theorem (Binomial Theorem). For every n > 0,

=3 (7)o

k=0

Proof. By induction on n. O

Definition (Weak Composition). A weak composition of k into n parts is a solution to the equation

r14+axo+---+x, =k wherez; €Z, x; >0

Theorem (Weak Composition Theorem). For any integers n > 1 and k > 0, the number of weak composi-
tions of k into m parts — that is, the number of nonnegative integer solutions to

r1+a2+ -+, =k
n+k—1
i .

Example. Let n =3 and k = 2. Then there are 6 weak compositions:

— is

0+0+2
0+240
2+0+0
1+1+0
1+0+1
0+1+1

There are 6 weak compositions.

Definition (Multiset). A multiset is a generalization of a set in which elements may be repeated.



Notation 4. Let

()= ()

denote the number of multisets of size k from a set of n elements.

Theorem. The number of multisets of size k£ from a set S is
IS\ _ [IS|+k—-1
k o k

Proof. We count the number of weak compositions of k into n parts.
We imagine placing n — 1 bars among k indistinguishable stars to divide them into n chambers. This
corresponds to choosing n — 1 positions for bars among k + n — 1 total slots.
Hence the number of such compositions is
n+k—1
(")

Definition (Composition). A composition of k into n parts is a solution to the equation

r14+ax2+---+x,=k wherex; €Z, x; > 1

Theorem. The number of compositions of k£ into n parts is
k—1
n—1

Notation 5. Let
n n!
.= ——— whereay+---4+ar=n
a,...,a ay!---ag!

Theorem. Let
M:{al‘xla az -T2, ..., ak'xk}

be a multiset with n = a; + - - - + ax elements. Then the number of distinct permutations of M is

n
|SM|< >
ai,...,0k

Theorem (Multinomial Theorem).

n
(x1+x2+”.+xk)n: 2: < >1.C111...x2k
ai,...,ak

ai+--tag=n



Definition (Generalized Binomial Coefficient). We define the generalized binomial coefficient for any

acCandk € Zsg by
(a) _ala-1)(a=2)---(a—k+1)
o k!

Theorem (Newton’s Binomial Theorem).

(1+4+z)*= Z <Z) z*  whenever the LHS makes sense

k=0
Theorem.
1 — k—1
- = Z n zF (a generating function using generalized binomial coefficients)
(1—x)n P k
Proof. Use Newton’s Binomial Theorem with o = —n:
(14+z)™= Z <_kn> "

Using the identity

we get

((
(1 42)" = ,i(l)k ((n +: - 1>> o i <(n +: - 1)> (o)t

Now replace x with —x:

Example. For n =1,

1+k-1 = k =1 forallkéizl+z+x2+x3+~~
k k 1—2

Generating Functions

Definition (Generating Function). The generating function for (A,w) is the formal power series

F(z) =Y 2"®, Note: F(1)=|A|
a€A



Lemma.

Proof.

Definition ((Formal Power Series)). A formal power series is an expression of the form

F(z) = i anx"
n=0

We do not require any notions of convergence, and usually do not want to plug in values for z. Instead, we
only care about the coefficients of F(x).
Notation 6. We denote the coefficient of =™ in F'(x) by

[2"]F(x)

Proposition ((Operations on Formal Power Series)). We can perform several familiar operations on formal
power series:

1. Addition: If F(z) =" a,z™, G(z) =), bya™, then

F(z) +G(z) := Z(an + by)z"

n

2. Multiplication:

n

F(z) Gx) = Z (Z akbn_k> " (same as polynomials)
k=0

3. Differentiation:

F'(z):= Z na,z" "t

n=0

4. Integration:




Theorem ((Multiplication Principle for Generating Functions)). Let

Sy AXBXCXDx---

be a bijection, where s <> (a,b,¢,d,...) € S.

Suppose there are weight functions:
1S — NZO
A — NZO
:B— NZO
:C — NZO
D — NZO

o2 ™ Qo &

such that
w(s) = ala) + B(b) +v(c) +6(d) +--- .

Then the generating function satisfies

3 = (Z xa(a)) <Z xﬁ(b)> (Z I7(0)> (Z zé(d))
seS acA beB ceC deD

Example (Binomial Theorem again). Let S = {binary strings of length n}

Ay =---=A4,={0,1}
Then
S+— Ay x---xA, with s=by-- b, (b1,...,bn)
Define w(s) := # I’'sin s

0 ifb;=0
(b)) = — b (b
;(b;) {1 b, — 1 w(s) = ai(b1) + - + an(by)
We have
me(s) = Z (Z) ¥ (by def’n of (n))
seES k>0
and

Multiplication Principle

Definition. A weight function on S, is called a statistic.

Definition. Let w = wy ... w, € S,,. A pair (w;,w;) is called an inversion if ¢ < j and w; > w;.



Remark. We want to study the function inv: S,, = Z>( defined by

inv(w) := # of inversions

Definition. Let Z(n, k) :== #{w € S, : inv(w) = k}
Proposition ((4.1) Generating Function for Inversions).

Zl(n,k)xk: Z VW — 1. (142) QI4+z+2?) - Q+z+--+2"1)
k>0 wWESy

Example (Computing Coeflicients).

Z(n,1) = [z'](1-(14x)---) = (choose one x from one of the n — 1 factors) = (n — 1)
I(n,2) = [)(1)A+2z)---Q+x+---+2 )

n—1
= ( 5 ) (choose two factors to each contribute one x)

Definition. The statistic given by the number of cycles in a permutation is defined as follows:
For w € S,, let C(w) := # cycles in w.

Definition. Let C(n, k) denote # {w € S,, : C(w) = k}.
Remark. We call these the (signed) Stirling numbers of the first kind.

Definition. The signed Stirling numbers of the first kind are defined as
C(n, k) :=#{we S, : C(w) =k}
where C': S, = Z> is the statistic given by

C(w) := # cycles in w

Proposition ((4.2) Basic Values). o C(n,n) =1
e C(n,1)=(m—-1)!

10



Theorem ((4.3) Exponential Generating Function).

Y Cn k)b =z(@+1)(@+2)-(+n—1)
k>0

Proposition. Given any permutation, say w = 4271635 € S7, we can express it as a product of disjoint

cycles. For example,
w=(1463)(2)57)

Each element ¢ is either
1. inserted as a new cycle, or

2. inserted into an existing cycle.

This process gives rise to a combinatorial encoding: each w € S,, corresponds to a tuple (by, ..., b,) with
b; indicating how ¢ was inserted.
Let
0 if ¢ starts a new cycle
B = 10} : : Y bi € B;
{1,2,...,i—1} otherwise

We define a map S,, — By X --- X B,,, where
Clw) =#{i:b; =0}

Then
2P0 —p 4 (i =D =z(z+1) - (x+n—1)
b;€B;
Therefore,
ZC(n,k)xk =z(x+1)---(z+n—-1)
k>0

Proposition ((4.4) Recurrence for Stirling Numbers of the First Kind).
Cn,k)=C(n—1,k—=1)+(n—-1)C(n—1,k)

Using generating functions. Recall the generating function:

ZC(n,k)xk::c(x+1)~~(z+n71)
k>0

We extract the z* coefficient:
Cln, k) =[z"a(z+1) - (z+n—-1) =" (z+1) - (x+n—-2)-(x+n—1)

Now write: '
=M@ +1) (@ tn =23 On—1.4)
J
Then:

= [*] ZC(H—laj)xj'(a?Jrn—l) ZZC(n—1»j)[$k}($j+1+(n—1)wj)

11



To get x*, we need:
j=k—-1=Cn-1,k-=1) and j=k=(n-1)C(n—1,k)

Therefore:
Cn,k)=C(n—1,k—-1)+(n—1)C(n—1,k)

Combinatorial proof. We analyze how to insert the last element n into a permutation of S,,_1:

e Case 1: Place n as a new singleton cycle. This increases the number of cycles by 1, contributing
Cn—1,k—1).

e Case 2: Insert n into one of the existing k cycles. There are (n— 1) positions available across all cycles,
contributing (n — 1)C'(n — 1, k).

Thus:
Cn,k)=C(n—1,k—=1)+(n—1)C(n—1,k)

O
Definition. The signed Stirling numbers of the first kind, denoted s(n, k), are defined via the identity
zz—1)(x—-2)---(z—n+1)= Zs(mk):rk
k=0
Equivalently,

n

(@) i=2(xz—=1)--(z—n+1) = Z(—l)"‘kC(n, k) "
k=0

where C'(n, k) are the (unsigned) Stirling numbers of the first kind.
This identity reflects the change of basis between the polynomial basis {z*} and the falling factorial basis

{(@)x}-

Definition. A partition of an n-element set X is a collection I = {By, ..., B} of subsets of X such that:
1. B; #0
2. BiﬂBj:@fOI“i#j

3. X=UL, B

Definition. Let S(n, k) denote the number of partitions of an n-element set into k blocks. These are called
the Stirling numbers of the second kind.

Proposition ((4.5) Recurrence for Stirling Numbers of the Second Kind).

S(n,k)y=Sn—-1,k—=1)+kS(n—1,k)

Combinatorial proof. Consider how to place the element n:

e Place n in a new singleton block: contributes S(n — 1,k — 1)

12



e Place n into one of the k existing blocks: contributes k- S(n — 1,k)

Thus,
S(n,k)=Sn—1,k—1)+kS(n—1,k)

Theorem ((Stirling Expansion)).

n n

S

k=0 k=0

I
2
S

&y
~—
—

8
~—
=

where (z);, = k!(7) denotes the falling factorial.

Theorem ((Change of Basis via Stirling Numbers)).
ZS(n,k) * = Vs ZS ="
k=0 =

k=0

These identities describe the change of basis between monomials and falling factorials.

Definition ((Polynomial Vector Space)). Let V be the vector space of polynomials of degree < d over

R:
d
V= {Zakwk:ao,...,adeR}
k=0

Two common bases for V are:

By ={1,z,22,... 2%}
By = {1, (:E)lv (1')27 sy (l')d}

Theorem ((Power Sum via Stirling Numbers)).

n n n a - N n+1
12" e B =Y Sk ) g

Definition ((Partition of an Integer)). A partition of n is a non-increasing sequence A = (A > Ay > A3 >
- > 0) such that

o0
Z A; =n  (only finitely many terms are nonzero).

We often write A = (A1, ..., Apm) if Ajpp1 = A2 =-+- =0,

Notation 7. If X is a partition of n, we write:
[Al=n or Abmn

The nonzero \;’s are called the parts of the partition.

13



Definition ((Length of a Partition)). If k = #{i : A\; # 0}, then k is called the number of parts of ),
denoted 4(X\) = k.

Remark. We can write partitions using exponential notation: If A has m, parts equal to 1, msy parts equal
to 2, etc., then:
A =1m2magms ...

For example:
(3,1,1) = 123!

Definition ((Young Diagram / Ferrers Shape)). Given a partition A = (A1, Ag,...), the Young diagram
(or Ferrers shape) of A is a left-justified array of boxes with A; boxes in row i.
Ezample: For A = (3,3,2,1, 1), the diagram is:

Definition ((Conjugate Partition)). The conjugate partition A’ is the one corresponding to the transpose
of the Young diagram of .
Ezample: The conjugate of (3,3,2,1,1) is X' = (5, 3,2):

[ ]

Lemma. The number of partitions of n with largest part < k is equal to the number of partitions of n
with < k parts.

Proof. Taking the conjugate of a Young diagram reflects its rows and columns. So:
# parts = length of first column, largest part = length of first row

Conjugation defines a bijection between the two sets. O

Theorem ((Euler)).

oo

Zp(n)x T -1 -3 _Hl—zi

n>0 i=1

This is the generating function for the partition function p(n), which counts the number of integer partitions
of n.

14



Theorem ((Euler — Partitions into Distinct Parts)). Let ¢(n) denote the number of partitions of n into
distinct parts.

oo

S qm)a” = [J (1 +27)

n>0 =1

This is the generating function for partitions where each part appears at most once.

Example. For n =5, the valid partitions into distinct parts are:

), 41, (32
and the invalid ones (repeated parts) are:

(37 ]" 1)7 (2727 1)7 (1717 ]" 1’1)

Remark. This generating function converges by the ratio test. Each term 1+ 2’ corresponds to either
including or excluding the part 7.

Theorem ((Euler — Partitions into Odd Parts)). Let poaa(n) be the number of partitions of n where each
part is odd. Then:

oo

2_poaam" =11y = mo g —ama o

n>0 i=1

Example. For n =5, the partitions into odd parts are:

(5), (3,1,1), (1,1,1,1,1)

Remark. This generating function runs over all odd indices 2¢ — 1, representing the inclusion of odd parts
only.

Theorem ((Euler)). Let poqa(n) be the number of partitions of n into odd parts, and let g(n) be the
number of partitions of n into distinct parts. Then:

Podd(n) = q(n)

Proof. We compare generating functions.
The generating function for partitions into odd parts is:

o0

Zpodd(n)x” = H H%

n>0 i=1

15



The generating function for partitions into distinct parts is:

oo

> gmam =T[0+2)
n>0 i=1
Now,
= Y = (1-z)(1—af(1—2a%).-- 1
E(H )= Q-2)1-a?)(1-a3)1-at) - (1-z)1-2?)(1—-a®)
Hence,

Z q(n)x" = Zpodd(n)l“" = q(n) = poaa(n)

n>0 n>0
Definition. Let p<y(n) denote the number of partitions of n with at most k parts.

Theorem. The generating function for p<(n) is:

0 1
Zpgk(n)x T o)1 —22) - (1 k)

n>0

Theorem ((Euler’s Pentagonal Number Theorem)).

(o) o0
H(l — J:k) = Z(—l)"xn(ngl) =1+ Z(—l)n (mn(sgil) + asn(sgm)
n=1

k=1 nez

Corollary ((Euler’s Recurrence for p(n))).

p(n)=pn—1)+pn—2)—p(n—>5)—pn—"7)+: -

k(3k+1)
2

where the indices are generalized pentagonal numbers , and signs alternate in pairs.

Definition (Indicator Function). For A C S, define the indicator function x4 : S — Z by

1, ifze A
xa(z) 12{

0, ifz¢g A

Observation 1. Let A, B C S. Then:

1> vale) = 4]

T€S
2. XA*XB = XAnB

3. Xac(z) =1—xa(z)

16



Proof of Inclusion-Exclusion (IEP). Define
F(z) = (1= xa(x))(1 = x8(z)) = xac () x5 (2)
Step 1. Note that
XAenBe(T) = X(aup)e(z) = 1 — xauB(7)
Step 2. Expand:
F(z) =1—xa(z) — x8(@) + xans(z)

Conclusion 1.

> (1 —xaus(z)) =S| —|AU B|
zeS
Conclusion 2.

> (1= xa(@) = x(@) + xann () = |S| = |A| = [B| + |AN B

zes
Theorem (Inclusion-Exclusion Principle (General Version)). Suppose Ay,..., A4, € S. Then
Oal=Scve 3 |na
i=1 Jj=1 JC[n], |J|=5 lieJ
Example.
= A1+ +|An| = A1 NAg| — - — A1 NAL + AT N AN A3+ + |[Ap2 N A1 N AL

Theorem (Inclusion-Exclusion Principle (Complement Form)).

n

U4

n

SICILNS ol g1

i=1 Jj=1 IC[n], [I|=j liel
= S—UAi :Z(—l)j Z ﬂAi
i=1 7=0 IC[n], |I|=j liel

Definition (Euler’s Totient Function). Let n € Z>o. Euler’s totient function is the map

@ :Z>9—Z suchthat ¢(n)=#{r:1<z<nand ged(z,n) =1}

Example.

e(12)=(1-3)(1-3)-12=12. =4

Wi

1
2’
The numbers relatively prime to 12 in [1, 12] are:

1, 5 7, 11

17



Theorem (Euler’s Product Formula). Let n = p{" p3? - - - pi* be the prime factorization of n. Then

Definition (Derangement). A derangement of [n] is a permutation
w=w(l)...w(n) € S, such that w(i) # i for all i € [n]

(i.e., a permutation with no fixed points).
Notation 8. Let d(n) denote the number of derangements of [n].

Theorem (Derangement Formula).

d(n)n!<$!11!+1. ! + ..+(1)n1>

Example.

11 1 1
d(3) = 3! (1 TR 3!> 3! (3) 2

Proof. Let S = {all permutations}, and let
A; = {permutations where i is a fixed point}

Then |A;| = (n — 1)!, and for any I C [n],

= (n—|1))!

N

i€l

By the inclusion-exclusion principle:

=Sy ¥

Jj=0 IC[n], [I]=j

= En:(—l)j (’;) (n—j)! = n! i (__1')]'

=0 =0

N

il

Definition (Derangement). A derangement of [n] is a permutation
w=w(l)...w(n) €S, such that w(i) # 1 for all i € [n]

(i.e., a permutation with no fixed points).

Notation 9. Let d(n) denote the number of derangements of [n].

18



Theorem (Derangement Formula).

Example.

11 1 1
d(3) = 3! (1 TREbT 3!> 3! (3) 2

Proof. Let S = {all permutations}, and define
A; = {permutations where i is a fixed point}
Then |4;] = (n — 1), and for any I C [n],

N

i€l

= (n— 1))

Applying inclusion-exclusion:

|-Scr ¥

j=0 IC[n], [1]=j

4

el

~S Sy (%)=

j=0

Theorem (Derangement Recurrence). The number of derangements satisfies the recurrence:

d(n) = (n — 1)(d(n — 1) + d(n — 2))

Proof. Consider the position of 1 in a derangement of [n]. It cannot map to 1, so suppose w(1) = k for some
k # 1. There are n — 1 such choices.
Now consider two cases:

e If w(k) = 1, then we have fixed a 2-cycle (1 k), and the rest of the permutation is a derangement of
n — 2 elements.

e If w(k) # 1, then we can remove 1 and fix k, obtaining a derangement of n — 1 elements.

So for each of the n — 1 values of k, we get

dn)=m—-1)(dn—-1)+d(n—-2))

19



Definition (Linear Homogeneous Recurrence). A sequence h = (hg, h1, ha,...) satisfies a linear homoge-
neous recurrence of degree d if there exist constants ag, ay,...,aq € R (not all zero) such that

VYn >d, aohn,+athp_1+- -+ agh,_q=0

We may assume without loss of generality that ag # 0 and ap = 1.
To generate the sequence, we need the first d terms:

ha+aihqg—1+---+aqgho=0

Definition. Let
V :={h = (uy) : h satisfies (*) for any initial condition}

Lemma. V is a vector space over C.

Proof. Let h,g € V and «,8 € C. Then ah + Bg € V, since linear combinations of solutions to a linear
homogeneous recurrence are again solutions. O

Lemma.

dim(V) =d

Definition (Characteristic Polynomial). The polynomial
t+azt o tag =0

is called the characteristic polynomial of the recurrence.

Remark. Suppose the characteristic polynomial has d distinct roots r1,...,7r4 € C.

Example. Consider the recurrence
fn - fn—l - fn—2 =0

Its characteristic polynomial is
?—zx—-1=0

The roots are

1++5
T

Lemma. Let 9 be a root of the characteristic polynomial. Then the sequence h,, =77 isin V, ie., it is a
solution to the recurrence.

Proof. For all n > d,
ry + alrg_l 4+ adrg_d =0

because the characteristic polynomial vanishes at rg. O

20



Lemma. The sequences (r7),...,(r]}) are linearly independent.
Corollary. These sequences form a basis of V.

Theorem. If the characteristic polynomial has d distinct roots r1,...,74 € C, then every solution to the
recurrence is of the form
hn, =c1r? + -+ cqry  for some ¢q,...,cq € C

Lemma. Suppose r; is a root of the characteristic polynomial with multiplicity m. Then the sequences
(rP), (nr}), ..., (™7 hry)

are all solutions to the recurrence.

Proof. Let P(z) = ¢+ a;x9~! + .. + a4 be the characteristic polynomial. Since 7 is a root of multiplicity
m, we can write

P(z) = (x —m)"Q(x)
where Q(z) is a polynomial of degree d — m and Q(r1) # 0.
Then,

d

(@) =m(z - r)" Q) + (z — )" Q' () = (z — )™ (mQ(2) + (z — 11)Q'(2))

So 71 is a root of multiplicity m — 1 of P’(z), and this pattern continues.

Now consider p
no (r”_dP(r)) =(n—d)r?P(r) + 17 - P'(r1) =0

so for n > d,
nrt +ay(n — Vet b ag(n —d)r =0

hence (nr}) is a solution, and similarly for higher powers of n. O
Theorem. Suppose r; is a root of multiplicity m;. Then any solution to the recurrence is of the form
hy =p1(n)ri + -+ pr(n)ry

where each p;(n) is a polynomial of degree < m; — 1.

Example (Fibonacci via Generating Functions). Consider the recurrence

fn:fn—1+fn—27 for n > 2, fOZO; f1=1

Define the generating function

F(x) = Z fnx™

n>0
Note:
Yo" = (for+ fa2)a =) fuaa" 4 a? Y fuoa"
n>2 n>2 n>2 n>2
So we get:

F(z) = fo = fiw = 2(F(z) = fo) + 2*F(x)
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Plug in fo =0, f1 = 1:

F(z)—z=zF(z)+ 2*F(z) = Fla)1l—z—a2%) =z = F(z) = ﬁ

Factor the denominator:

T 145 1—+5

F == h = =
(=) (1 —rz)(1 —raz) where 2 "2 2

Using partial fractions:

a B
F(x)_l—rlo:—’_lfrgx
Solve: 1 )
a+p=0, —arp—-pFr=1=>a=—, =-——
B 2 — Br1 NG B NG
So:

Extracting coeflicients:

Theorem. The following are equivalent:

1. The sequence (h,,) satisfies a linear recurrence of order d:

hp+athp_1+ - +aghn_q=0 foralln>d, aq+#0

2. The generating function

H(z) = Z hpa™

n>0

is a rational function:

where G(z) =1 + a7 + - -+ + agz?, and deg F(x) < d.

Observation 2. If the characteristic polynomial has roots rq, ..., r, with multiplicities m;,

k

G(z) =[] - rizx)™

i=1

Proof of Theorem. (1) = (2):
From the recurrence,

Zhnx”+a1 Zhn,lx”—i—---—i—ad hp—qx™ =0

n>d n>d n>d
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Shift indices appropriately:

d—1 d—2
= (H(x) - Zhnx"> + a1z (H(CC) - Zhnx”> + -+ agz?H(z) =0
n=0 n=0
Group terms:
H(@) G@)— Fl@) =0 = H(x)= gg;

where deg F(x) <d — 1.
(2) = (1):
Suppose H(z) = gg‘z; with G(z) = 1+ ayz + - - - + agz?. Then:

Now take the coefficient of 2™ for n > d:
hp, +athp—1+ - +aghn,—_q=0 foralln>d
since deg F'(x) < d — 1 implies the higher coefficients vanish. O

Corollary. Let r1, ..., be the roots of the characteristic polynomial with multiplicities mq, ..., mg. Then
the general term of the sequence (h,,) satisfies

k
P =S piln)r?
i=1
where degp;(n) < m;.
Proof. From the generating function approach, we have

[T, (1 = ry)ms

H(z) =

Using partial fractions, we write

/\il /\i2 )\im'
H(z) = i
(z) Z (1 —rx * (1—rx)? e (1- rix)”“)

=1

By Newton’s binomial theorem:

Define p;(n) := Z;n:l Aij (”jﬁ;1)7 a polynomial of degree < m;. Then:

k
hy, = Zpi(n)rln
i=1
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1 Catalan Numbers

Definition (Catalan Numbers (Euler)). The Catalan number C,, is the number of triangulations of a convex
polygon with n + 2 sides.

Let P,12 be a convex polygon with n + 2 sides (e.g., Ps is a pentagon).

A triangulation is a collection of diagonals that do not cross except at their endpoints and which
partition P,o into triangles.

Theorem. The Catalan numbers satisfy the recurrence

Cn+1 = Z Ck . Cnfk with CO =1
k=0

Definition (Ballot Sequence). A ballot sequence of length 2n is a sequence (a1, ..., a,) with each a; €
{£1}, such that exactly n of the a; are +1, and n are —1, and the partial sums are nonnegative:

k
Zaizo forall 1 <k < 2n.

i=1

Remark (Ballot Interpretation). This arises from the classic ballot problem:

Two candidates, A and B, receive n votes each.

Voter preferences are revealed one at a time.

e Encode each vote as +1 for A and —1 for B.

The condition that A never trails B corresponds exactly to the partial sum condition above.

Theorem (Probability of a Random Ballot Sequence). The probability that a uniformly random sequence
of n +1’s and n —1’s is a ballot sequence is

Cn 1
) 1
where C,, = %_H(Qg) is the n-th Catalan number.

Definition (Dyck Path). A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) consisting of
steps (1,1) (up-steps) and (1, —1) (down-steps), such that the path never goes below the z-axis.

Example. For n = 3, one such Dyck path is illustrated as:
(1,0, @,-1, ,-1, @,1, ¢,-1, @,

or encoded as the sequence:
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Theorem. The number of Dyck paths of length 2n, denoted D,,, is equal to the number of ballot sequences
of length 2n, and is given by the Catalan number:

1 2n
D, =C, = .
" ' n—|—1<n>

Theorem. The n-th Catalan number is given by

oo L (m_ 1 (w1
"Tn+1\n/) 2n+1 n '

Definition (Binary Tree). A binary tree on n vertices is an element of B,,, where B,, is defined recursively
as follows:

1. By ={o}
2.

B, = : (Tl,TQ)GBkXBz,k—I—Z:n
Here, v is called the root.
Theorem. The number of binary trees on n + 1 vertices is given by the Catalan number C,,.

Proof (1). We have |By| = 1, and the recursive relation:
Bl = Y (Bl Bl
k+l=n
This recurrence defines the Catalan numbers. O

Proof (2). Let Tnpy2 be the set of triangulations of an (n + 2)-gon. There is a bijection between such
triangulations and binary trees with n + 1 vertices, proving that the number of such binary trees is C,,. O

Definition (Plane or Catalan Tree). A plane tree P on n vertices is an element of the set P, defined
recursively as follows:

1. Py = {v}, where v is the root.

2. Forn > 1,
m
Pn: :P1,~~.7Pm€7)kl,...7pkm, with Zkzzn—l
i=1
That is, a plane tree consists of a root joined to an ordered sequence of subtrees Py, ..., P, whose

total number of vertices (excluding the root) is n — 1. The order of the subtrees matters.

Theorem. The number of plane trees with n + 1 vertices is equal to the nth Catalan number C,,.
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2 Exponential Generating Functions

Definition (Exponential Generating Function). Given a sequence ag, a1, as, ..., the exponential generating
function (EGF) associated to this sequence is defined by

F(z)=Y %x"

n>0

Example. Let a,, = n!. Then the ordinary generating function (OGF) is

G(z) = Z nlz"™,

n>0

whereas the exponential generating function is

Example. Let D(n) denote the number of derangements of [n]. Then

_ D
D(n)—n!kzzo o

Thus the exponential generating function is

" (=R 2 "L (=1)F
F(x)zZ(n! (k!)>n!: Z(k!) x".

n>0 k=0

Rewriting by interchanging the summation order:

_1)k —1)k 2k 1 —z)* e

k>0 Ton>k k>0 k>0

Definition (Structure). A structure is a function « : {finite sets} — {finite sets} such that if X, Y are finite
sets and |X| = |Y|, then

Definition (Exponential Generating Function of a Structure). Let « be a structure. The exponential
generating function (EGF) associated to « is defined by

where a, = |a(X)]| for any set X of size n.
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Example (Trivial Structure). Define the structure £(X) := {*} for all finite sets X. That is, £(X) assigns
a singleton set to every input set X.
Then |E(X)| =1 for all X, so the exponential generating function is

n

xz T
Fg(a;)zzF = e®.
n>0

Example (Trivial Structure Minus the Empty Set). Define £(X) as

g ifX=0,

8 = {{*} if X # 2.

Then a,, = |[E(X)| =1 for n > 1, and ay = 0. The exponential generating function is

n

L T

n>1

Definition (Disjoint Union of Structures). Given two structures o and 3, define their disjoint union
structure o U S by
(aUB)(X) == a(X) U B(X).
Then
[(a b B)(X)] = [a(X)]+ [B(X)].

Hence, a U 3 is a structure.

Proposition (Addition Principle for EGFs). Let « and 8 be structures with exponential generating functions

Fo(z) = Zan%, Fa(z) = an%.

n>0 : n>0
Then the EGF of the disjoint union structure o Ll 3 is

Faup(z) = Folz) + Fp(x).

Theorem (Multiplication Principle for EGFs). Let a and S be two structures, and define the product
structure a x . Then their exponential generating function satisfies

Foxp(x) = Fa(z) - Fp(),

where

Then the coefficients satisfy
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Definition (Product structure). Given two structures « and S, define their product structure by
(a % B)(X) = {(a(A), B(B)) : X = AUB}.

This can be extended recursively:
a1 X g X o X ap = ag X (g X X ay),

or more generally:
ar X x g = (a1 (A1), u(Ag)) : X = Ay U U A}

Definition (Structure equivalence). We say o = 8 if they have the same cardinalities, i.e.,
la(X)| = |B(X)| for all finite sets X,

which implies
Fy(z) = Fp(x).

Example. Define a(X) to be the set of surjective functions f : X — [k]. Then
x
IMM=XFWMH;§
n>0

where S(n, k) is the Stirling number of the second kind.
Define
— {x} HX#0
E(X) =
) {@ if X =0
Then o = E x -+ x E (k times), with

Ex - xB={(kay,....%n,): X =AU UA}

and
Fgpz)=€¢"—1 = F,(z)=(e"— 1)*

Thus,

1 xT
Fs( py(v) = H(e —1*

Example. Define B(X) to be the set of unordered partitions of X. Then
B(X)=SX,0)usS(X,1)U---

Hence,
1 @ _
Fp(z) = ZFS(-,k)(JU) = Z y(ex — =t

k>0 k>0
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Example. Let C(X,k) = {w € Sx : w has k cycles}. Then the exponential generating function is
c(n, k)
Fe(py(z) = Z gfﬂ

n!
n>0

where c(n, k) is the number of permutations of n elements with k cycles.

e For k = 1: Fc(-,l)(3€> = Zn21 % = log (ﬁ)

e More generally, define
CO(X,]C) = {(Cl,...,Ck) cw=C1---Cy € Sx}

as ordered k-tuples of disjoint cycles. Then C, = C(-,1)* and

Fe,((@) = <log <1 1x>)k
R =y (o (1))

Definition (Partition Structure). Given a structure «, we define the partition structure I1,(X) as

SO

i=1

k
I, (X) := {{sl,...,sk} X =] |Xi, Si € oz(Xi)},

where the set {S1,..., Sk} is unordered.

Remark. This structure is related to the product structure; it collects ways to partition X and apply
structure a on each part. Weak compositions are closely related.

Example. Let a = £ be the trivial structure:
E(X) :={x} for all sets X.

Then

k

e (X) = {{Sl,...,Sk}:X | | x.. Sl-*} o~ {{Xl,...,Xk}:X:UXl}:B(X),

i=1

the set of unordered partitions of X.

Example. Let a =C(+, 1), the structure of a single cycle on a finite set. Then
I, (X) = {{51,...,sk} X =| | X, S5 ec(x, 1)} .

This corresponds to choosing a cycle permutation for each part of the partition.
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Definition (Restricted Structure). Given a structure «, define the restricted structure @ by

 Ja(x) it X #0,
(X):= {@ it X =0.

The exponential generating function of @ is related to that of a by

Fs(x) = Fo(z) — ao.

Theorem (Exponential Formula). Let « be a structure and II, the associated partition structure. Then

Fi, () = exp(Falx)) = Y =0

k>0

Theorem (Heuristic Exponential Principle). Let a, be the number of ways to perform a certain task on an
n-element set with ap = 0. Let h,, be the number of ways to partition [n] into an arbitrary number of blocks
and perform the task on each block. Then

z" z"
Az) =) "y H(2) = > i
n>0 n>0

and the relationship between the two is
H(z) = exp(A(2)).

Example (Exponential Generating Function for Derangements). The exponential generating function for
the number of derangements is

Define the structure a by

X, 1) if|X|>2
) {OKD i1X 22
0 if | X|=0or1,

where C(X,1) denotes permutations with one cycle (i.e., cyclic permutations), and this ensures all cycles
have length at least 2.
Claim: II, = D, where D denotes the derangement structure, and

Fi(x) = exp(Fa(a)).

We compute:

30



Proposition (OGFs vs EGFs).

OGFs (Ordinary Generating Functions)

EGFs (Exponential Generating Functions)

Structures on unordered collections.

Structures on ordered collections.

n Cln.lfn
@) = 3 ana Fla) = > 2
n>0 n>0 ’
(1) = 3 bua” Gla) =3
g\ = " N n!
n>0 n>0
Product: Z (Z akbn_k.> z" Product: Z (Z (Z) akbn_k.> %
n>0 k=0 n>0 k=0
Example: Example:
Putting n indistinguishable balls into 2 unlabeled] Putting n labeled balls into 2 labeled bins.
1
f(@) = () = T— Flz) = Gla) = ¢*
Product: ——— Product: e*
(1 =)

Let
d(z) = {g

Problem 2. Let h, be the number of n-digit numbers where every digit is odd and 1 and 3 occur an even
number of times.
We define the exponential generating function H(x

):

if n is even

if nis odd

Let F = d(x)® (product over the digits 1, 3, 5, 7, 9).

3
et +e” 1
F= —M— ——

Ly 2
8 \ n! n!

= %em (eI +2+e_””) =

(" +e)’

3n 1
+n,>;»hn=5"+2-3"+1

Problem 3. Let g, be the number of multisets over {1,3,5,7,9} such that the elements 1 and 3 occur an
even number of times.
Let M be the set of multisets with elements in {0,1,2,...}, i.e., M C N". Define wt(n) = >_n;.

2 3 1 1
gla)=(1+2*+2*+...) (I+z+2>+...) = 27 T 7
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