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Counting Principles

Definition (Injection). A function f : A→ B is an injection if for all a, a′ ∈ A, a ̸= a′ implies f(a) ̸= f(a′).

Definition (Surjection). A function f : A→ B is a surjection if for all b ∈ B, there exists a ∈ A such that
f(a) = b.

Definition (Bijection). A function f : A→ B is a bijection if it is both injective and surjective.

Definition (Inverse Function). A function g : B → A is called the inverse of f : A→ B if

g ◦ f = idA and f ◦ g = idB

In this case, g = f−1.

Theorem. A function f : A→ B is a bijection if and only if it has an inverse.

Definition (Cardinality). The cardinality of a finite set A is the number of elements in A.

Proposition (Cardinality of Equivalent Sets). If A ∼= B (i.e., there exists a bijection A→ B), then |A| = |B|.

Definition (Disjoint Sets). Sets A and B are disjoint if A ∩B = ∅.

Proposition (Addition Principle). If A and B are disjoint, then

|A ∪B| = |A|+ |B|

General version: If A1, . . . , An are disjoint, then

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|
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Problem 1. How many squares are in the figure below?

Let S = {all squares in the figure}, Sk = {k × k squares}

Then,
S = S1 ∪ S2 ∪ S3

By the Addition Principle,
|S| = |S1|+ |S2|+ |S3| = 9 + 4 + 1 = 14

Definition (Cartesian Product). The Cartesian product of sets A and B is defined as

A×B := {(a, b) : a ∈ A, b ∈ B}

Proposition (Multiplication Principle).

|A×B| = |A| · |B|

More generally, for sets A1, . . . , An,

|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · |An|

Notation 1.
[n] := {1, 2, . . . , n}

Definition (Permutation). A permutation of a set A is a linear ordering of the elements of A, or equiva-
lently, a bijection

f : [n]→ A where n := |A|

Let SA denote the set of permutations of A.

Notation 2. The factorial of n is defined as

n! := n(n− 1)(n− 2) · · · 1

Example: 3! = 3 · 2 · 1 = 6

Theorem. If A is a finite set with |A| = n, then the number of permutations of A is

|SA| = n!
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Definition (Partial Permutation). Let A be an n-element set. A partial permutation of A is a linear
ordering of k elements of A.

Equivalently, partial permutations correspond to injections

f : [k] ↪→ A

Theorem. The number of injections [k] ↪→ A is

n(n− 1)(n− 2) · · · (n− k + 1) =: (n)k

where (n)k is the falling factorial.

Proposition (Subtraction Principle). Let A ⊆ B. Then the size of the set difference is

|B \A| = |B| − |A|

Proposition (Division Principle, Version 1). Suppose f : A ↠ B is a d-to-1 map. That is,

∀b ∈ B, |f−1(b)| = d where f−1(b) = {a ∈ A : f(a) = b}

Then,

|B| = |A|
d

Definition (Circular Permutation). A circular permutation of a set A is an arrangement of the elements
of A around a circle such that rotations of the same arrangement are considered the same (but not reflections).

Definition (Alphabet and Word). An alphabet A is a finite set whose elements are called letters.
A word in A is a sequence of letters from A (including the empty word).
The number of letters in a word is called the length of the word.

Proposition. The number of words of length k over an n-letter alphabet is

nk

Proposition. The number of subsets of an n-element set A is 2n. That is,

|P(A)| = 2|A|
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Notation 3. Let (
n

k

)
:=

n!

k!(n− k)!

Proposition. The number of words of length n over the alphabet A = {0, 1} that contain exactly k 1’s
(and n− k 0’s) is (

n

k

)

Definition (Lattice Path). A lattice path L from (0, 0) to (m,n) is a sequence (v0, v1, . . . , vk) such that

v0 = (0, 0), vk = (m,n), and vi+1 − vi ∈ {(1, 0), (0, 1)} for all i = 0, . . . , k − 1.

Proposition. The number of lattice paths from (0, 0) to (m,n) is(
m+ n

n

)

Proposition.
n∑

k=0

(
n

k

)
= 2n

Proof.

2n =

n∑
k=0

(
n

k

)
This identity follows from the binomial expansion of (1 + 1)n.

Proposition (Pascal’s Recurrence). (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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Proposition (Binomial Convolution Identity).(
ℓ+m

n

)
=

n∑
k=0

(
ℓ

k

)(
m

n− k

)

Proof. The left-hand side counts the number of ways to choose n elements from A ∪ B where |A| = ℓ and
|B| = m.

The right-hand side breaks this down by choosing k elements from A and n − k from B, summing over
all possible k.

Theorem (Binomial Theorem). For every n ≥ 0,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

Proof. By induction on n.

Definition (Weak Composition). A weak composition of k into n parts is a solution to the equation

x1 + x2 + · · ·+ xn = k where xi ∈ Z, xi ≥ 0

Theorem (Weak Composition Theorem). For any integers n ≥ 1 and k ≥ 0, the number of weak composi-
tions of k into n parts — that is, the number of nonnegative integer solutions to

x1 + x2 + · · ·+ xn = k

— is (
n+ k − 1

k

)
.

Example. Let n = 3 and k = 2. Then there are 6 weak compositions:

0 + 0 + 2

0 + 2 + 0

2 + 0 + 0

1 + 1 + 0

1 + 0 + 1

0 + 1 + 1

There are 6 weak compositions.

Definition (Multiset). A multiset is a generalization of a set in which elements may be repeated.
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Notation 4. Let ((
n

k

))
:=

(
n+ k − 1

k

)
denote the number of multisets of size k from a set of n elements.

Theorem. The number of multisets of size k from a set S is((
|S|
k

))
=

(
|S|+ k − 1

k

)

Proof. We count the number of weak compositions of k into n parts.
We imagine placing n − 1 bars among k indistinguishable stars to divide them into n chambers. This

corresponds to choosing n− 1 positions for bars among k + n− 1 total slots.
Hence the number of such compositions is (

n+ k − 1

k

)

Definition (Composition). A composition of k into n parts is a solution to the equation

x1 + x2 + · · ·+ xn = k where xi ∈ Z, xi ≥ 1

Theorem. The number of compositions of k into n parts is(
k − 1

n− 1

)

Notation 5. Let (
n

a1, . . . , ak

)
:=

n!

a1! · · · ak!
where a1 + · · ·+ ak = n

Theorem. Let
M = {a1 · x1, a2 · x2, . . . , ak · xk}

be a multiset with n = a1 + · · ·+ ak elements. Then the number of distinct permutations of M is

|SM | =
(

n

a1, . . . , ak

)

Theorem (Multinomial Theorem).

(x1 + x2 + · · ·+ xk)
n =

∑
a1+···+ak=n

(
n

a1, . . . , ak

)
xa1
1 · · ·x

ak

k
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Definition (Generalized Binomial Coefficient). We define the generalized binomial coefficient for any
α ∈ C and k ∈ Z≥0 by (

α

k

)
:=

α(α− 1)(α− 2) · · · (α− k + 1)

k!

Theorem (Newton’s Binomial Theorem).

(1 + x)α =

∞∑
k=0

(
α

k

)
xk whenever the LHS makes sense

Theorem.

1

(1− x)n
=

∞∑
k=0

((
n+ k − 1

k

))
xk (a generating function using generalized binomial coefficients)

Proof. Use Newton’s Binomial Theorem with α = −n:

(1 + x)−n =

∞∑
k=0

(
−n
k

)
xk

Using the identity (
−n
k

)
= (−1)k

((
n+ k − 1

k

))
we get

(1 + x)−n =

∞∑
k=0

(−1)k
((

n+ k − 1

k

))
xk =

∞∑
k=0

((
n+ k − 1

k

))
(−x)k

Now replace x with −x:
1

(1− x)n
=

∞∑
k=0

((
n+ k − 1

k

))
xk

Example. For n = 1,((
1 + k − 1

k

))
=

(
k

k

)
= 1 for all k ⇒ 1

1− x
= 1 + x+ x2 + x3 + · · ·

Generating Functions

Definition (Generating Function). The generating function for (A,w) is the formal power series

F (x) :=
∑
a∈A

xw(a), Note: F (1) = |A|.
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Lemma.

F (x) =

∞∑
n=0

anx
n.

Proof.

F (x) =
∑
a∈A

xw(a)

=

∞∑
n=0

∑
a∈A

w(a)=n

xw(a)

=

∞∑
n=0

anx
n.

Definition ((Formal Power Series)). A formal power series is an expression of the form

F (x) =

∞∑
n=0

anx
n

We do not require any notions of convergence, and usually do not want to plug in values for x. Instead, we
only care about the coefficients of F (x).

Notation 6. We denote the coefficient of xn in F (x) by

[xn]F (x)

Proposition ((Operations on Formal Power Series)). We can perform several familiar operations on formal
power series:

1. Addition: If F (x) =
∑

n anx
n, G(x) =

∑
n bnx

n, then

F (x) +G(x) :=
∑
n

(an + bn)x
n

2. Multiplication:

F (x) ·G(x) =
∑
n

(
n∑

k=0

akbn−k

)
xn (same as polynomials)

3. Differentiation:

F ′(x) :=

∞∑
n=0

nanx
n−1

4. Integration: ∫
F (x) dx :=

∞∑
n=0

an
n+ 1

xn+1
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Theorem ((Multiplication Principle for Generating Functions)). Let

S
∼←→ A×B × C ×D × · · ·

be a bijection, where s↔ (a, b, c, d, . . .) ∈ S.
Suppose there are weight functions:

w : S → N≥0

α : A→ N≥0

β : B → N≥0

γ : C → N≥0

δ : D → N≥0

...

such that
w(s) = α(a) + β(b) + γ(c) + δ(d) + · · · .

Then the generating function satisfies

∑
s∈S

xw(s) =

(∑
a∈A

xα(a)

)(∑
b∈B

xβ(b)

)(∑
c∈C

xγ(c)

)(∑
d∈D

xδ(d)

)
· · ·

Example (Binomial Theorem again). Let S = {binary strings of length n}

A1 = · · · = An = {0, 1}

Then
S ←→ A1 × · · · ×An with s = b1 · · · bn 7→ (b1, . . . , bn)

Define w(s) := # 1’s in s

αi(bi) :=

{
0 if bi = 0

1 if bi = 1
⇒ w(s) = α1(b1) + · · ·+ αn(bn)

We have ∑
s∈S

xw(s) =
∑
k≥0

(
n

k

)
xk

(
by def’n of

(
n

k

))
and ∑

bi∈Ai

xbi = 1 + x

Multiplication Principle

⇒ (1 + x)n =
∑
k≥0

(
n

k

)
xk

Definition. A weight function on Sn is called a statistic.

Definition. Let w = w1 . . . wn ∈ Sn. A pair (wi, wj) is called an inversion if i < j and wi > wj .
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Remark. We want to study the function inv : Sn → Z≥0 defined by

inv(w) := # of inversions

Definition. Let I(n, k) := # {w ∈ Sn : inv(w) = k}

Proposition ((4.1) Generating Function for Inversions).∑
k≥0

I(n, k)xk =
∑
w∈Sn

xinv(w) = 1 · (1 + x) · (1 + x+ x2) · · · (1 + x+ · · ·+ xn−1)

Example (Computing Coefficients).

I(n, 1) = [x1] (1 · (1 + x) · · · ) = (choose one x from one of the n− 1 factors) = (n− 1)

I(n, 2) = [x2](1)(1 + x) · · · (1 + x+ · · ·+ xn−1)

=

(
n− 1

2

)
(choose two factors to each contribute one x)

Definition. The statistic given by the number of cycles in a permutation is defined as follows:
For w ∈ Sn, let C(w) := # cycles in w.

Definition. Let C(n, k) denote # {w ∈ Sn : C(w) = k}.

Remark. We call these the (signed) Stirling numbers of the first kind.

Definition. The signed Stirling numbers of the first kind are defined as

C(n, k) := # {w ∈ Sn : C(w) = k}

where C : Sn → Z≥0 is the statistic given by

C(w) := # cycles in w

Proposition ((4.2) Basic Values). • C(n, n) = 1

• C(n, 1) = (n− 1)!
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Theorem ((4.3) Exponential Generating Function).∑
k≥0

C(n, k)xk = x(x+ 1)(x+ 2) · · · (x+ n− 1)

Proposition. Given any permutation, say w = 42 7 1 6 3 5 ∈ S7, we can express it as a product of disjoint
cycles. For example,

w = (1 4 6 3)(2)(5 7)

Each element i is either

1. inserted as a new cycle, or

2. inserted into an existing cycle.

This process gives rise to a combinatorial encoding: each w ∈ Sn corresponds to a tuple (b1, . . . , bn) with
bi indicating how i was inserted.

Let

Bi :=

{
{0} if i starts a new cycle

{1, 2, . . . , i− 1} otherwise
⇒ bi ∈ Bi

We define a map Sn −→ B1 × · · · ×Bn, where

C(w) = # {i : bi = 0}

Then ∑
bi∈Bi

xβ(bi) = x+ (i− 1)x0 = x(x+ 1) · · · (x+ n− 1)

Therefore, ∑
k≥0

C(n, k)xk = x(x+ 1) · · · (x+ n− 1)

Proposition ((4.4) Recurrence for Stirling Numbers of the First Kind).

C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k)

Using generating functions. Recall the generating function:∑
k≥0

C(n, k)xk = x(x+ 1) · · · (x+ n− 1)

We extract the xk coefficient:

C(n, k) = [xk]x(x+ 1) · · · (x+ n− 1) = [xk] (x+ 1) · · · (x+ n− 2) · (x+ n− 1)

Now write:
= [xk] (x+ 1) · · · (x+ n− 2) ·

∑
j

C(n− 1, j)xj

Then:

= [xk]

∑
j

C(n− 1, j)xj · (x+ n− 1)

 =
∑
j

C(n− 1, j) [xk](xj+1 + (n− 1)xj)
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To get xk, we need:

j = k − 1⇒ C(n− 1, k − 1) and j = k ⇒ (n− 1)C(n− 1, k)

Therefore:
C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k)

Combinatorial proof. We analyze how to insert the last element n into a permutation of Sn−1:

• Case 1: Place n as a new singleton cycle. This increases the number of cycles by 1, contributing
C(n− 1, k − 1).

• Case 2: Insert n into one of the existing k cycles. There are (n−1) positions available across all cycles,
contributing (n− 1)C(n− 1, k).

Thus:
C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k)

Definition. The signed Stirling numbers of the first kind, denoted s(n, k), are defined via the identity

x(x− 1)(x− 2) · · · (x− n+ 1) =

n∑
k=0

s(n, k)xk

Equivalently,

(x)n := x(x− 1) · · · (x− n+ 1) =

n∑
k=0

(−1)n−kC(n, k)xk

where C(n, k) are the (unsigned) Stirling numbers of the first kind.
This identity reflects the change of basis between the polynomial basis {xk} and the falling factorial basis

{(x)k}.

Definition. A partition of an n-element set X is a collection Π = {B1, . . . , Bk} of subsets of X such that:

1. Bi ̸= ∅

2. Bi ∩Bj = ∅ for i ̸= j

3. X =
⋃k

i=1 Bi

Definition. Let S(n, k) denote the number of partitions of an n-element set into k blocks. These are called
the Stirling numbers of the second kind.

Proposition ((4.5) Recurrence for Stirling Numbers of the Second Kind).

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k)

Combinatorial proof. Consider how to place the element n:

• Place n in a new singleton block: contributes S(n− 1, k − 1)
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• Place n into one of the k existing blocks: contributes k · S(n− 1, k)

Thus,
S(n, k) = S(n− 1, k − 1) + k S(n− 1, k)

Theorem ((Stirling Expansion)).

xn =

n∑
k=0

k!S(n, k)

(
x

k

)
=

n∑
k=0

S(n, k)(x)k

where (x)k = k!
(
x
k

)
denotes the falling factorial.

Theorem ((Change of Basis via Stirling Numbers)).

n∑
k=0

S(n, k)xk = (x)n,

n∑
k=0

S(n, k) (x)k = xn

These identities describe the change of basis between monomials and falling factorials.

Definition ((Polynomial Vector Space)). Let V be the vector space of polynomials of degree ≤ d over
R:

V =

{
d∑

k=0

akx
k : a0, . . . , ad ∈ R

}
Two common bases for V are:

B1 = {1, x, x2, . . . , xd}
B2 = {1, (x)1, (x)2, . . . , (x)d}

Theorem ((Power Sum via Stirling Numbers)).

1n + 2n + · · ·+ kn =

k∑
j=1

S(k, j) · j! ·
(
n+ 1

j + 1

)

Definition ((Partition of an Integer)). A partition of n is a non-increasing sequence λ = (λ1 ≥ λ2 ≥ λ3 ≥
· · · ≥ 0) such that

∞∑
i=1

λi = n (only finitely many terms are nonzero).

We often write λ = (λ1, . . . , λm) if λm+1 = λm+2 = · · · = 0.

Notation 7. If λ is a partition of n, we write:

|λ| = n or λ ⊢ n

The nonzero λi’s are called the parts of the partition.
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Definition ((Length of a Partition)). If k = #{i : λi ̸= 0}, then k is called the number of parts of λ,
denoted ℓ(λ) = k.

Remark. We can write partitions using exponential notation: If λ has m1 parts equal to 1, m2 parts equal
to 2, etc., then:

λ = 1m12m23m3 · · ·

For example:
(3, 1, 1) = 1231

Definition ((Young Diagram / Ferrers Shape)). Given a partition λ = (λ1, λ2, . . . ), the Young diagram
(or Ferrers shape) of λ is a left-justified array of boxes with λi boxes in row i.

Example: For λ = (3, 3, 2, 1, 1), the diagram is:

Definition ((Conjugate Partition)). The conjugate partition λ′ is the one corresponding to the transpose
of the Young diagram of λ.

Example: The conjugate of (3, 3, 2, 1, 1) is λ′ = (5, 3, 2):

Lemma. The number of partitions of n with largest part ≤ k is equal to the number of partitions of n
with ≤ k parts.

Proof. Taking the conjugate of a Young diagram reflects its rows and columns. So:

# parts = length of first column, largest part = length of first row

Conjugation defines a bijection between the two sets.

Theorem ((Euler)). ∑
n≥0

p(n)xn =
1

(1− x)(1− x2)(1− x3) · · ·
=

∞∏
i=1

1

1− xi

This is the generating function for the partition function p(n), which counts the number of integer partitions
of n.
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Theorem ((Euler – Partitions into Distinct Parts)). Let q(n) denote the number of partitions of n into
distinct parts.

∑
n≥0

q(n)xn =

∞∏
i=1

(1 + xi)

This is the generating function for partitions where each part appears at most once.

Example. For n = 5, the valid partitions into distinct parts are:

(5), (4, 1), (3, 2)

and the invalid ones (repeated parts) are:

(3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1)

Remark. This generating function converges by the ratio test. Each term 1 + xi corresponds to either
including or excluding the part i.

Theorem ((Euler – Partitions into Odd Parts)). Let podd(n) be the number of partitions of n where each
part is odd. Then: ∑

n≥0

podd(n)x
n =

∞∏
i=1

1

1− x2i−1
=

1

(1− x)(1− x3)(1− x5) · · ·

Example. For n = 5, the partitions into odd parts are:

(5), (3, 1, 1), (1, 1, 1, 1, 1)

Remark. This generating function runs over all odd indices 2i− 1, representing the inclusion of odd parts
only.

Theorem ((Euler)). Let podd(n) be the number of partitions of n into odd parts, and let q(n) be the
number of partitions of n into distinct parts. Then:

podd(n) = q(n)

Proof. We compare generating functions.
The generating function for partitions into odd parts is:

∑
n≥0

podd(n)x
n =

∞∏
i=1

1

1− x2i−1
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The generating function for partitions into distinct parts is:

∑
n≥0

q(n)xn =

∞∏
i=1

(1 + xi)

Now,
∞∏
i=1

(1 + xi) =
(1− x2)(1− x4)(1− x6) · · ·

(1− x)(1− x2)(1− x3)(1− x4) · · ·
=

1

(1− x)(1− x3)(1− x5) · · ·

Hence, ∑
n≥0

q(n)xn =
∑
n≥0

podd(n)x
n ⇒ q(n) = podd(n)

Definition. Let p≤k(n) denote the number of partitions of n with at most k parts.

Theorem. The generating function for p≤k(n) is:∑
n≥0

p≤k(n)x
n =

1

(1− x)(1− x2) · · · (1− xk)

Theorem ((Euler’s Pentagonal Number Theorem)).

∞∏
k=1

(1− xk) =
∑
n∈Z

(−1)nx
n(3n−1)

2 = 1 +

∞∑
n=1

(−1)n
(
x

n(3n−1)
2 + x

n(3n+1)
2

)

Corollary ((Euler’s Recurrence for p(n))).

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · ·

where the indices are generalized pentagonal numbers k(3k±1)
2 , and signs alternate in pairs.

Definition (Indicator Function). For A ⊆ S, define the indicator function χA : S → Z by

χA(x) :=

{
1, if x ∈ A

0, if x /∈ A

Observation 1. Let A,B ⊆ S. Then:

1.
∑
x∈S

χA(x) = |A|

2. χA · χB = χA∩B

3. χAc(x) = 1− χA(x)
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Proof of Inclusion-Exclusion (IEP). Define

F (x) = (1− χA(x))(1− χB(x)) = χAc(x)χBc(x)

Step 1. Note that
χAc∩Bc(x) = χ(A∪B)c(x) = 1− χA∪B(x)

Step 2. Expand:
F (x) = 1− χA(x)− χB(x) + χA∩B(x)

Conclusion 1. ∑
x∈S

(1− χA∪B(x)) = |S| − |A ∪B|

Conclusion 2. ∑
x∈S

(1− χA(x)− χB(x) + χA∩B(x)) = |S| − |A| − |B|+ |A ∩B|

Theorem (Inclusion-Exclusion Principle (General Version)). Suppose A1, . . . , An ⊆ S. Then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

j=1

(−1)j+1
∑

J⊆[n], |J|=j

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣

Example.

= |A1|+ · · ·+ |An| − |A1 ∩A2| − · · · − |An−1 ∩An|+ |A1 ∩A2 ∩A3|+ · · ·+ |An−2 ∩An−1 ∩An|

Theorem (Inclusion-Exclusion Principle (Complement Form)).∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

j=1

(−1)j+1
∑

I⊆[n], |I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
⇒

∣∣∣∣∣S −
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

j=0

(−1)j
∑

I⊆[n], |I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Definition (Euler’s Totient Function). Let n ∈ Z≥0. Euler’s totient function is the map

φ : Z≥0 → Z such that φ(n) = #{x : 1 ≤ x ≤ n and gcd(x, n) = 1}

Example.
φ(12) = (1− 1

2 )(1−
1
3 ) · 12 = 12 · 12 ·

2
3 = 4

The numbers relatively prime to 12 in [1, 12] are:

1, 5, 7, 11

17



Theorem (Euler’s Product Formula). Let n = pα1
1 pα2

2 · · · p
αk

k be the prime factorization of n. Then

φ(n) = n

k∏
i=1

(
1− 1

pi

)

Definition (Derangement). A derangement of [n] is a permutation

w = w(1) . . . w(n) ∈ Sn such that w(i) ̸= i for all i ∈ [n]

(i.e., a permutation with no fixed points).

Notation 8. Let d(n) denote the number of derangements of [n].

Theorem (Derangement Formula).

d(n) = n!

(
1

0!
− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n 1

n!

)

Example.

d(3) = 3!

(
1− 1

1!
+

1

2!
− 1

3!

)
= 3!

(
1

3

)
= 2

Proof. Let S = {all permutations}, and let

Ai = {permutations where i is a fixed point}

Then |Ai| = (n− 1)!, and for any I ⊆ [n], ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (n− |I|)!

By the inclusion-exclusion principle:∣∣∣∣∣S −
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

j=0

(−1)j
∑

I⊆[n], |I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
n∑

j=0

(−1)j
(
n

j

)
(n− j)! = n!

n∑
j=0

(−1)j

j!

Definition (Derangement). A derangement of [n] is a permutation

w = w(1) . . . w(n) ∈ Sn such that w(i) ̸= i for all i ∈ [n]

(i.e., a permutation with no fixed points).

Notation 9. Let d(n) denote the number of derangements of [n].

18



Theorem (Derangement Formula).

d(n) = n!

(
1

0!
− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n 1

n!

)

Example.

d(3) = 3!

(
1− 1

1!
+

1

2!
− 1

3!

)
= 3!

(
1

3

)
= 2

Proof. Let S = {all permutations}, and define

Ai = {permutations where i is a fixed point}

Then |Ai| = (n− 1)!, and for any I ⊆ [n], ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (n− |I|)!

Applying inclusion-exclusion:∣∣∣∣∣S −
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

j=0

(−1)j
∑

I⊆[n], |I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
n∑

j=0

(−1)j
(
n

j

)
(n− j)!

= n!

n∑
j=0

(−1)j

j!

Theorem (Derangement Recurrence). The number of derangements satisfies the recurrence:

d(n) = (n− 1)(d(n− 1) + d(n− 2))

Proof. Consider the position of 1 in a derangement of [n]. It cannot map to 1, so suppose w(1) = k for some
k ̸= 1. There are n− 1 such choices.

Now consider two cases:

• If w(k) = 1, then we have fixed a 2-cycle (1 k), and the rest of the permutation is a derangement of
n− 2 elements.

• If w(k) ̸= 1, then we can remove 1 and fix k, obtaining a derangement of n− 1 elements.

So for each of the n− 1 values of k, we get

d(n) = (n− 1)(d(n− 1) + d(n− 2))
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Definition (Linear Homogeneous Recurrence). A sequence h = (h0, h1, h2, . . . ) satisfies a linear homoge-
neous recurrence of degree d if there exist constants a0, a1, . . . , ad ∈ R (not all zero) such that

∀n ≥ d, a0hn + a1hn−1 + · · ·+ adhn−d = 0

We may assume without loss of generality that ad ̸= 0 and a0 = 1.
To generate the sequence, we need the first d terms:

hd + a1hd−1 + · · ·+ adh0 = 0

Definition. Let
V := {h = (un) : h satisfies (*) for any initial condition}

Lemma. V is a vector space over C.

Proof. Let h, g ∈ V and α, β ∈ C. Then αh + βg ∈ V , since linear combinations of solutions to a linear
homogeneous recurrence are again solutions.

Lemma.
dim(V ) = d

Definition (Characteristic Polynomial). The polynomial

xd + a1x
d−1 + · · ·+ ad = 0

is called the characteristic polynomial of the recurrence.

Remark. Suppose the characteristic polynomial has d distinct roots r1, . . . , rd ∈ C.

Example. Consider the recurrence
fn − fn−1 − fn−2 = 0

Its characteristic polynomial is
x2 − x− 1 = 0

The roots are

x =
1±
√
5

2

Lemma. Let r0 be a root of the characteristic polynomial. Then the sequence hn = rn0 is in V , i.e., it is a
solution to the recurrence.

Proof. For all n ≥ d,
rn0 + a1r

n−1
0 + · · ·+ adr

n−d
0 = 0

because the characteristic polynomial vanishes at r0.
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Lemma. The sequences (rn1 ), . . . , (r
n
d ) are linearly independent.

Corollary. These sequences form a basis of V .

Theorem. If the characteristic polynomial has d distinct roots r1, . . . , rd ∈ C, then every solution to the
recurrence is of the form

hn = c1r
n
1 + · · ·+ cdr

n
d for some c1, . . . , cd ∈ C

Lemma. Suppose r1 is a root of the characteristic polynomial with multiplicity m. Then the sequences

(rn1 ), (nrn1 ), . . . , (nm−1rn1 )

are all solutions to the recurrence.

Proof. Let P (x) = xd + a1x
d−1 + · · ·+ ad be the characteristic polynomial. Since r1 is a root of multiplicity

m, we can write
P (x) = (x− r1)

mQ(x)

where Q(x) is a polynomial of degree d−m and Q(r1) ̸= 0.
Then,

d

dx
P (x) = m(x− r1)

m−1Q(x) + (x− r1)
mQ′(x) = (x− r1)

m−1 (mQ(x) + (x− r1)Q
′(x))

So r1 is a root of multiplicity m− 1 of P ′(x), and this pattern continues.
Now consider

r1
d

dr

(
rn−dP (r)

)
= (n− d)rn−d

1 P (r1) + rn1 · P ′(r1) = 0

so for n ≥ d,
nrn1 + a1(n− 1)rn−1

1 + · · ·+ ad(n− d)rn−d
1 = 0

hence (nrn1 ) is a solution, and similarly for higher powers of n.

Theorem. Suppose ri is a root of multiplicity mi. Then any solution to the recurrence is of the form

hn = p1(n)r
n
1 + · · ·+ pk(n)r

n
k

where each pi(n) is a polynomial of degree ≤ mi − 1.

Example (Fibonacci via Generating Functions). Consider the recurrence

fn = fn−1 + fn−2, for n ≥ 2, f0 = 0, f1 = 1

Define the generating function

F (x) =
∑
n≥0

fnx
n

Note: ∑
n≥2

fnx
n =

∑
n≥2

(fn−1 + fn−2)x
n = x

∑
n≥2

fn−1x
n−1 + x2

∑
n≥2

fn−2x
n−2

So we get:
F (x)− f0 − f1x = x(F (x)− f0) + x2F (x)
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Plug in f0 = 0, f1 = 1:

F (x)− x = xF (x) + x2F (x)⇒ F (x)(1− x− x2) = x⇒ F (x) =
x

1− x− x2

Factor the denominator:

F (x) =
x

(1− r1x)(1− r2x)
where r1 =

1 +
√
5

2
, r2 =

1−
√
5

2

Using partial fractions:

F (x) =
α

1− r1x
+

β

1− r2x

Solve:

α+ β = 0, −αr2 − βr1 = 1⇒ α =
1√
5
, β = − 1√

5

So:

F (x) =
1√
5

(
1

1− r1x
− 1

1− r2x

)
Extracting coefficients:

fn = [xn]F (x) =
1√
5
(rn1 − rn2 )

Theorem. The following are equivalent:

1. The sequence (hn) satisfies a linear recurrence of order d:

hn + a1hn−1 + · · ·+ adhn−d = 0 for all n ≥ d, ad ̸= 0

2. The generating function

H(x) =
∑
n≥0

hnx
n

is a rational function:

H(x) =
F (x)

G(x)

where G(x) = 1 + a1x+ · · ·+ adx
d, and degF (x) < d.

Observation 2. If the characteristic polynomial has roots r1, . . . , rk with multiplicities m1, . . . ,mk, then

G(x) =

k∏
i=1

(1− rix)
mi

Proof of Theorem. (1) ⇒ (2):
From the recurrence, ∑

n≥d

hnx
n + a1

∑
n≥d

hn−1x
n + · · ·+ ad

∑
n≥d

hn−dx
n = 0
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Shift indices appropriately:

⇒

(
H(x)−

d−1∑
n=0

hnx
n

)
+ a1x

(
H(x)−

d−2∑
n=0

hnx
n

)
+ · · ·+ adx

dH(x) = 0

Group terms:

H(x) ·G(x)− F (x) = 0 ⇒ H(x) =
F (x)

G(x)

where degF (x) ≤ d− 1.
(2) ⇒ (1):

Suppose H(x) = F (x)
G(x) with G(x) = 1 + a1x+ · · ·+ adx

d. Then:

H(x) ·G(x) = F (x)

Now take the coefficient of xn for n ≥ d:

hn + a1hn−1 + · · ·+ adhn−d = 0 for all n ≥ d

since degF (x) ≤ d− 1 implies the higher coefficients vanish.

Corollary. Let r1, . . . , rk be the roots of the characteristic polynomial with multiplicities m1, . . . ,mk. Then
the general term of the sequence (hn) satisfies

hn =

k∑
i=1

pi(n)r
n
i

where deg pi(n) < mi.

Proof. From the generating function approach, we have

H(x) =
F (x)∏k

i=1(1− rix)mi

Using partial fractions, we write

H(x) =

k∑
i=1

(
λi1

1− rix
+

λi2

(1− rix)2
+ · · ·+ λimi

(1− rix)mi

)
By Newton’s binomial theorem:

[xn]
1

(1− rix)j
=

(
n+ j − 1

j − 1

)
rni

Taking coefficients of xn, we obtain

hn =

k∑
i=1

mi∑
j=1

λij

(
n+ j − 1

j − 1

) rni

Define pi(n) :=
∑mi

j=1 λij

(
n+j−1
j−1

)
, a polynomial of degree < mi. Then:

hn =

k∑
i=1

pi(n)r
n
i
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1 Catalan Numbers

Definition (Catalan Numbers (Euler)). The Catalan number Cn is the number of triangulations of a convex
polygon with n+ 2 sides.

Let Pn+2 be a convex polygon with n+ 2 sides (e.g., P5 is a pentagon).
A triangulation is a collection of diagonals that do not cross except at their endpoints and which

partition Pn+2 into triangles.

Theorem. The Catalan numbers satisfy the recurrence

Cn+1 =

n∑
k=0

Ck · Cn−k with C0 = 1

Definition (Ballot Sequence). A ballot sequence of length 2n is a sequence (a1, . . . , a2n) with each ai ∈
{±1}, such that exactly n of the ai are +1, and n are −1, and the partial sums are nonnegative:

k∑
i=1

ai ≥ 0 for all 1 ≤ k ≤ 2n.

Remark (Ballot Interpretation). This arises from the classic ballot problem:

• Two candidates, A and B, receive n votes each.

• Voter preferences are revealed one at a time.

• Encode each vote as +1 for A and −1 for B.

• The condition that A never trails B corresponds exactly to the partial sum condition above.

Theorem (Probability of a Random Ballot Sequence). The probability that a uniformly random sequence
of n +1’s and n −1’s is a ballot sequence is

Cn(
2n
n

) =
1

n+ 1
,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

Definition (Dyck Path). A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) consisting of
steps (1, 1) (up-steps) and (1,−1) (down-steps), such that the path never goes below the x-axis.

Example. For n = 3, one such Dyck path is illustrated as:

(1,1), (1,-1), (1,-1), (1,1), (1,-1), (1,1)

or encoded as the sequence:
1, 1, -1, -1, 1, -1
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Theorem. The number of Dyck paths of length 2n, denoted Dn, is equal to the number of ballot sequences
of length 2n, and is given by the Catalan number:

Dn = Cn =
1

n+ 1

(
2n

n

)
.

Theorem. The n-th Catalan number is given by

Cn =
1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

Definition (Binary Tree). A binary tree on n vertices is an element of Bn, where Bn is defined recursively
as follows:

1. B0 = {∅}

2.

Bn =

 v

T1 T2

: (T1, T2) ∈ Bk × Bℓ, k + ℓ = n


Here, v is called the root.

Theorem. The number of binary trees on n+ 1 vertices is given by the Catalan number Cn.

Proof (1). We have |B0| = 1, and the recursive relation:

|Bn| =
∑

k+ℓ=n

|Bk| · |Bℓ|

This recurrence defines the Catalan numbers.

Proof (2). Let Tn+2 be the set of triangulations of an (n + 2)-gon. There is a bijection between such
triangulations and binary trees with n+ 1 vertices, proving that the number of such binary trees is Cn.

Definition (Plane or Catalan Tree). A plane tree P on n vertices is an element of the set Pn, defined
recursively as follows:

1. P1 = {v}, where v is the root.

2. For n > 1,

Pn =


v

P1 Pm
. . .

: P1, . . . , Pm ∈ Pk1
, . . . ,Pkm

, with

m∑
i=1

ki = n− 1


That is, a plane tree consists of a root joined to an ordered sequence of subtrees P1, . . . , Pm whose
total number of vertices (excluding the root) is n− 1. The order of the subtrees matters.

Theorem. The number of plane trees with n+ 1 vertices is equal to the nth Catalan number Cn.
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2 Exponential Generating Functions

Definition (Exponential Generating Function). Given a sequence a0, a1, a2, . . ., the exponential generating
function (EGF) associated to this sequence is defined by

F (x) =
∑
n≥0

an
n!

xn.

Example. Let an = n!. Then the ordinary generating function (OGF) is

G(x) =
∑
n≥0

n!xn,

whereas the exponential generating function is

F (x) =
∑
n≥0

xn =
1

1− x
.

Example. Let D(n) denote the number of derangements of [n]. Then

D(n) = n!

n∑
k=0

(−1)k

k!
.

Thus the exponential generating function is

F (x) =
∑
n≥0

(
n!

n∑
k=0

(−1)k

k!

)
xn

n!
=
∑
n≥0

n∑
k=0

(−1)k

k!
xn.

Rewriting by interchanging the summation order:

F (x) =
∑
k≥0

(−1)k

k!

∑
n≥k

xn =
∑
k≥0

(−1)k

k!
· xk

1− x
=

1

1− x

∑
k≥0

(−x)k

k!
=

e−x

1− x
.

Definition (Structure). A structure is a function α : {finite sets} → {finite sets} such that if X,Y are finite
sets and |X| = |Y |, then

|α(X)| = |α(Y )|.

Definition (Exponential Generating Function of a Structure). Let α be a structure. The exponential
generating function (EGF) associated to α is defined by

Fα(x) =
∑
n≥0

anx
n

n!
,

where an = |α(X)| for any set X of size n.
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Example (Trivial Structure). Define the structure E(X) := {∗} for all finite sets X. That is, E(X) assigns
a singleton set to every input set X.

Then |E(X)| = 1 for all X, so the exponential generating function is

FE(x) =
∑
n≥0

xn

n!
= ex.

Example (Trivial Structure Minus the Empty Set). Define E(X) as

E(X) :=

{
∅ if X = ∅,

{∗} if X ̸= ∅.

Then an = |E(X)| = 1 for n ≥ 1, and a0 = 0. The exponential generating function is

FE(x) =
∑
n≥1

xn

n!
= ex − 1.

Definition (Disjoint Union of Structures). Given two structures α and β, define their disjoint union
structure α ⊔ β by

(α ⊔ β)(X) := α(X) ⊔ β(X).

Then
|(α ⊔ β)(X)| = |α(X)|+ |β(X)|.

Hence, α ⊔ β is a structure.

Proposition (Addition Principle for EGFs). Let α and β be structures with exponential generating functions

Fα(x) =
∑
n≥0

an
xn

n!
, Fβ(x) =

∑
n≥0

bn
xn

n!
.

Then the EGF of the disjoint union structure α ⊔ β is

Fα⊔β(x) = Fα(x) + Fβ(x).

Theorem (Multiplication Principle for EGFs). Let α and β be two structures, and define the product
structure α× β. Then their exponential generating function satisfies

Fα×β(x) = Fα(x) · Fβ(x),

where

Fα(x) =
∑
n≥0

an
xn

n!
, Fβ(x) =

∑
n≥0

bn
xn

n!
, Fα×β(x) =

∑
n≥0

cn
xn

n!
.

Then the coefficients satisfy

cn =

n∑
k=0

(
n

k

)
akbn−k.
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Definition (Product structure). Given two structures α and β, define their product structure by

(α× β)(X) := {(α(A), β(B)) : X = A ⊔B} .

This can be extended recursively:

α1 × α2 × · · · × αn := α1 × (α2 × · · · × αn),

or more generally:
α1 × · · · × αℓ := {(α1(A1), . . . , αℓ(Aℓ)) : X = A1 ⊔ · · · ⊔Aℓ} .

Definition (Structure equivalence). We say α ≡ β if they have the same cardinalities, i.e.,

|α(X)| = |β(X)| for all finite sets X,

which implies
Fα(x) = Fβ(x).

Example. Define α(X) to be the set of surjective functions f : X → [k]. Then

Fα(x) =
∑
n≥0

S(n, k)k! · x
n

n!

where S(n, k) is the Stirling number of the second kind.
Define

E(X) :=

{
{∗} if X ̸= ∅
∅ if X = ∅

Then α = E × · · · × E (k times), with

E × · · · × E = {(∗A1
, . . . , ∗Ak

) : X = A1 ⊔ · · · ⊔Ak}

and
FE(x) = ex − 1 ⇒ Fα(x) = (ex − 1)k

Thus,

FS(·,k)(x) =
1

k!
(ex − 1)k

Example. Define B(X) to be the set of unordered partitions of X. Then

B(X) = S(X, 0) ⊔ S(X, 1) ⊔ · · ·

Hence,

FB(x) =
∑
k≥0

FS(·,k)(x) =
∑
k≥0

1

k!
(ex − 1)k = ee

x−1
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Example. Let C(X, k) = {ω ∈ SX : ω has k cycles}. Then the exponential generating function is

FC(·,k)(x) =
∑
n≥0

c(n, k)

n!
xn

where c(n, k) is the number of permutations of n elements with k cycles.

• For k = 1: FC(·,1)(x) =
∑

n≥1
xn

n = log
(

1
1−x

)
.

• More generally, define
Co(X, k) := {(C1, . . . , Ck) : ω = C1 · · ·Ck ∈ SX}

as ordered k-tuples of disjoint cycles. Then Co ∼= C(·, 1)k and

FCo(·,k)(x) =

(
log

(
1

1− x

))k

so

FC(·,k)(x) =
1

k!

(
log

(
1

1− x

))k

.

Definition (Partition Structure). Given a structure α, we define the partition structure Πα(X) as

Πα(X) :=

{
{S1, . . . , Sk} : X =

k⊔
i=1

Xi, Si ∈ α(Xi)

}
,

where the set {S1, . . . , Sk} is unordered.

Remark. This structure is related to the product structure; it collects ways to partition X and apply
structure α on each part. Weak compositions are closely related.

Example. Let α = E be the trivial structure:

E(X) := {∗} for all sets X.

Then

ΠE(X) =

{
{S1, . . . , Sk} : X =

k⊔
i=1

Xi, Si = ∗

}
∼=
{
{X1, . . . , Xk} : X =

⊔
Xi

}
= B(X),

the set of unordered partitions of X.

Example. Let α = C(·, 1), the structure of a single cycle on a finite set. Then

Πα(X) =
{
{S1, . . . , Sk} : X =

⊔
Xi, Si ∈ C(Xi, 1)

}
.

This corresponds to choosing a cycle permutation for each part of the partition.
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Definition (Restricted Structure). Given a structure α, define the restricted structure α by

α(X) :=

{
α(X) if X ̸= ∅,
∅ if X = ∅.

The exponential generating function of α is related to that of α by

Fα(x) = Fα(x)− a0.

Theorem (Exponential Formula). Let α be a structure and Πα the associated partition structure. Then

FΠα
(x) = exp(Fα(x)) =

∑
k≥0

Fα(x)
k

k!
.

Theorem (Heuristic Exponential Principle). Let an be the number of ways to perform a certain task on an
n-element set with a0 = 0. Let hn be the number of ways to partition [n] into an arbitrary number of blocks
and perform the task on each block. Then

A(x) :=
∑
n≥0

an
xn

n!
, H(x) :=

∑
n≥0

hn
xn

n!
,

and the relationship between the two is
H(x) = exp(A(x)).

Example (Exponential Generating Function for Derangements). The exponential generating function for
the number of derangements is

FD(x) =
e−x

1− x
.

Define the structure α by

α(X) :=

{
C(X, 1) if |X| ≥ 2,

∅ if |X| = 0 or 1,

where C(X, 1) denotes permutations with one cycle (i.e., cyclic permutations), and this ensures all cycles
have length at least 2.

Claim: Πα = D, where D denotes the derangement structure, and

FD(x) = exp(Fα(x)).

We compute:

Fα(x) = FC(·,1)(x)− x

= log

(
1

1− x

)
− x,

FD(x) = exp(Fα(x)) = exp

(
log

(
1

1− x

)
− x

)
=

e−x

1− x
.
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Proposition (OGFs vs EGFs).
OGFs (Ordinary Generating Functions) EGFs (Exponential Generating Functions)
Structures on unordered collections. Structures on ordered collections.

f(x) =
∑
n≥0

anx
n F (x) =

∑
n≥0

anx
n

n!

g(x) =
∑
n≥0

bnx
n G(x) =

∑
n≥0

bnx
n

n!

Product:
∑
n≥0

( n∑
k=0

akbn−k

)
xn Product:

∑
n≥0

( n∑
k=0

(
n

k

)
akbn−k

)xn

n!

Example:
Putting n indistinguishable balls into 2 unlabeled.

Example:
Putting n labeled balls into 2 labeled bins.

f(x) = g(x) =
1

1− x
F (x) = G(x) = ex

Product:
1

(1− x)2
Product: e2x

Problem 2. Let hn be the number of n-digit numbers where every digit is odd and 1 and 3 occur an even
number of times.

We define the exponential generating function H(x):

H(x) =
∑
n≥0

hnx
n

n!

Let

d(x) =

{
xn if n is even

0 if n is odd

Let F = d(x)3 (product over the digits 1, 3, 5, 7, 9).

F =

(
ex + e−x

2

)3

=
1

8

(
ex + e−x

)3
=

1

8
ex
(
ex + 2 + e−x

)
=

1

8

(
5n

n!
+

2 · 3n

n!
+

1

n!

)
⇒ hn = 5n + 2 · 3n + 1

Problem 3. Let gn be the number of multisets over {1, 3, 5, 7, 9} such that the elements 1 and 3 occur an
even number of times.

Let M be the set of multisets with elements in {0, 1, 2, . . . }, i.e., M ⊆ Nr. Define wt(n) =
∑

ni.

g(x) =
(
1 + x2 + x4 + . . .

)2 (
1 + x+ x2 + . . .

)3
=

1

(1− x2)2
· 1

(1− x)3
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