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1 Basics and Miscellaneous

Definition (Basic Set Theory). Let h : Ω1 → Ω2 and A ⊆ Ω2. The preimage of A under h is defined as:

h−1(A) = {ω ∈ Ω1 | h(ω) ∈ A}.

For an arbitrary collection {Ai}i∈I of subsets Ai ⊆ Ω2, we have:

h−1

(⋃
i∈I

Ai

)
=
⋃
i∈I

h−1(Ai) and h−1

(⋂
i∈I

Ai

)
=
⋂
i∈I

h−1(Ai).

For the image of a set B ⊆ Ω1, defined as:

h(B) := {ω′ ∈ Ω2 | ω′ = h(ω) for some ω ∈ B},

we have:

h

(⋃
i∈I

Bi

)
=
⋃
i∈I

h(Bi) and h

(⋂
i∈I

Bi

)
⊆
⋂
i∈I

h(Bi),

with equality in the second case if h is injective.
Similarly, DeMorgan’s laws hold for arbitrary collections of Ai ⊆ Ω:(⋃

i∈I

Ai

)c

=
⋂
i∈I

Ac
i and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i ,

where we define Ac = Ω \A = {ω ∈ Ω | ω /∈ A}.

Definition (Axiom of Choice). The Axiom of Choice states that given any collection {Xi}i∈I of nonempty
sets indexed by a set I, there exists a function f : I →

⋃
i∈I Xi such that f(i) ∈ Xi for all i ∈ I. This

function f is called a choice function.

Theorem (Banach-Tarski Paradox). Let S be a solid ball in R3. It is possible to partition S into a finite
number of disjoint subsets, S1, S2, . . . , Sn, such that these subsets can be reassembled (using only rotations
and translations) into two solid balls, each congruent to the original ball S.

This paradox relies on the Axiom of Choice and demonstrates that certain notions of volume and measure
fail in higher-dimensional spaces.

Definition (Borel Set). A Borel set is any set in a σ-algebra generated by the open subsets of a topological
space X.

More formally, let T denote the collection of open sets in X. The Borel σ-algebra, denoted B(X), is the
smallest σ-algebra containing all the open sets in X. A set A ⊆ X is a Borel set if A ∈ B(X).
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2 σ-Algebras

Definition (Sample Space). The sample space (Ω) is the set of all possible outcomes of a probabilistic
experiment.

For example, for the experiment of flipping two coins:

Ω = {TT, TH, HT, HH}.

Definition (Outcome). An outcome (ω) is an element of the sample space Ω.
For example, ω ∈ Ω could be HT in the experiment of flipping two coins.

Definition (Event). An event is a subset of the sample space, A ⊆ Ω.
For example, the event of getting at least one head in a coin flip is:

A = {HT, TH, HH}.

Definition (σ-Algebra). A σ-algebra on a sample space Ω is a non-empty collection F of subsets A ⊆ Ω
satisfying the following properties:

1. Complement Closed: If A ∈ F , then Ac = Ω \A ∈ F .

2. Countable Union Closed: If A1, A2, · · · ∈ F , then
⋃∞

i=1 Ai ∈ F .

A set Ω equipped with a σ-algebra F is called a measurable space . These are the subsets that can be
assigned a measure or probability.

Proposition. Let F be a σ-algebra on Ω. Then:

1. Ω ∈ F and ∅ ∈ F .

2. (Countable Intersection Closed) If A1, A2, · · · ∈ F , then
⋂∞

i=1 Ai ∈ F .

Remark. The intersections and unions in a σ-algebra can be taken to be finite.

Example (Examples of σ-Algebras). • The power set P(Ω) is a σ-algebra, often called the ”finest”
σ-algebra.

• The collection {∅,Ω} is a σ-algebra, often called the ”coarsest” σ-algebra.

• The collection {∅, A,Ac,Ω} for a single A ⊆ Ω is a σ-algebra.

• A topology on Ω determines a coarsest σ-algebra containing it.

Definition (Measurable Function). Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A function h : Ω1 → Ω2

is measurable if:
h−1(A) ∈ F1 for all A ∈ F2.
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Definition (Generated σ-Algebra). Let (E, E) be a measurable space and X : Ω → E. We define the
σ-algebra on Ω generated by X as:

FX := {X−1(A) | A ∈ E}.

This is the coarsest σ-algebra with respect to which X is measurable.
Thus, X is measurable with respect to a σ-algebra F on Ω if and only if FX ⊆ F .

Definition (Measure). Let (E, E) be a measurable space. A measure µ on (E, E) is a function µ : E → [0,∞]
satisfying the following:

1. (Non-negativity) For each A ∈ E , µ(A) ≥ 0 (including ∞).

2. (Countable Additivity) For A1, A2, · · · ∈ E such that Ai ∩Aj = ∅ for i ̸= j,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

3. µ(∅) = 0 (implied if there exists A ∈ E of finite measure).

Remark. The union/sum in the above can be taken to be finite.

Definition (Measure Space). A measure space (E, E , µ) is a measurable space (E, E) equipped with a
measure µ. It is called discrete if E is countable and E = P(E), the power set of E.

3 Probability Spaces

Definition (Probability Space). A probability space (Ω,F ,P) is a measure space where P(Ω) = 1.
For A ∈ F , P(A) is interpreted as the probability that A occurs, or equivalently, that ω ∈ A.

Proposition (Basic Properties of Probability Spaces). Let (Ω,F ,P) be a probability space. Then the
following hold:

1. For A ∈ F ,
P(A) + P(Ac) = 1.

2. For A,B ∈ F ,
P(A ∪B) = P(A) + P(B)− P(A ∩B).

3. For A ⊆ B, A,B ∈ F ,
P(A) ≤ P(B).

4. Let Ω be a countable set. Show that F = P(Ω) is the unique σ-algebra containing the singleton sets
{ω} ⊆ Ω for all ω ∈ Ω.

5. Let Ω be countable and F = P(Ω). Show that P is uniquely determined by the convergent sequence
{P({ω})}ω∈Ω as:

P(A) =
∑
ω∈A

P({ω}) for any A ⊆ Ω.
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Remark. Properties 4 and 5 both hold for Ω finite as well.

Definition (Probability: New Spaces from Old - Uniform Probability Measure). Let Ω be a finite set. The
uniform probability measure is defined by

P({ω}) = 1

N
,

for every ω ∈ Ω, where N = |Ω| is the cardinality of Ω.
Let (Ω,F ,P) be a probability space, (E, E) a measurable space, and X : Ω → E measurable, called an

E-valued random variable. Define the pushforward probability measure PX on (E, E) by:

PX(A) = P(X−1(A)) = P({ω ∈ Ω | X(ω) ∈ A}),

for all A ∈ E .

Definition (Probability: New Spaces from Old). Let Ω be a sample space and A,B ⊆ Ω be events with
P(B) > 0. The conditional probability P(A | B) is defined by:

P(A | B) =
P(A ∩B)

P(B)
.

Proposition. P(· | B) : F → R is a probability measure on (Ω,F).

Remark. We can restrict the σ-algebra F to define a σ-algebra on B by FB = {A ∩ B | A ∈ F}. We can
equivalently view P(· | B) as a measure on (B,FB).

Remark (Multiplication Rule). For events A,B,C,

P(A ∩B) = P(A | B)P(B),

and more generally:
P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B).

Independence

Definition. Two events A,B ⊆ Ω are independent if:

P(A | B) = P(A),

or equivalently:
P(A ∩B) = P(A)P(B).

Definition. Two Ei-valued random variables Xi : Ω → (Ei, Ei) are independent if X−1
1 (A) and X−1

2 (B) are
independent for every A ∈ E1 and B ∈ E2.
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Example. Two random variables X1, X2 : Ω → Z are independent if for all x1, x2 ∈ Z,

P(X1 = x1 and X2 = x2) = P(X1 = x1)P(X2 = x2).

Definition (Mutual Independence of More Than Two Events). Given a collection of more than two events
{Ai}i∈I or random variables, we say they are mutually independent if:

1. They are pairwise independent, meaning for all i, j ∈ I with i ̸= j,

P (Ai ∩Aj) = P (Ai)P (Aj).

2. The probabilities of all possible intersections of subsets of the events factor as the products of their
individual probabilities. That is, for any subset {i1, i2, . . . , ik} ⊆ I,

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik).

For example, for three events A, B, and C to be mutually independent, the following conditions must
hold:

P (A ∩B) = P (A)P (B), P (B ∩ C) = P (B)P (C), P (A ∩ C) = P (A)P (C),

and
P (A ∩B ∩ C) = P (A)P (B)P (C).

Mutual independence extends pairwise independence by requiring the same factorization property for
intersections of more than two events.

3.1 Bayes

Theorem (Basic Bayes’ Rule). Let A and B be events with P (A), P (B) > 0. The relationship between
their probabilities is given by:

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A).

In its simplest form, Bayes’ rule follows directly:

P (B | A) =
P (A | B)P (B)

P (A)
.

This formula allows us to calculate P (B | A) (the posterior probability) using P (A | B) (the likelihood),
P (A) (the evidence), and P (B) (the prior probability).

Bayes’ rule is a method for updating beliefs:

• P (B) is the initial assumption or prior probability of B.

• P (B | A) is the posterior probability of B after observing A.

• The factor P (A|B)
P (A) is the re-weighting factor, which adjusts the prior probability based on the new

evidence A.

The re-weighting factor P (A|B)
P (A) > 1 if and only if P (A | B) > P (A), which occurs when B makes A more

likely.
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Theorem (Law of Total Probability). Let B1, . . . , Bn ⊆ Ω be a partition of the sample space Ω. For any
event A ⊆ Ω, we have:

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bn),

or equivalently,

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) + · · ·+ P (A | Bn)P (Bn).

pf:

P (A) = P

(
A ∩

⋃
i

Bi

)

= P

(⋃
i

(A ∩Bi)

)
=
∑
i

P (A ∩Bi) (by 1.14)

=
∑
i

P (A | Bi)P (Bi) (by 1.32).

Theorem (Extended Bayes’ Rule). Let B1, . . . , Bn ⊆ Ω be a partition of the sample space Ω. For any event
A ⊆ Ω and any i ∈ {1, . . . , n}, we have:

P (Bi | A) =
P (Bi ∩A)

P (A)
,

or equivalently,

P (Bi | A) =
P (A | Bi)P (Bi)

P (A | B1)P (B1) + P (A | B2)P (B2) + · · ·+ P (A | Bn)P (Bn)
.

This result expresses P (Bi | A) as the portion of P (A) contributed by P (A ∩Bi).

4 Discrete Random Variables

Proposition (Measurability of a Function). Let (Ω,F ,P) be a probability space and (E, E) a measurable
space. A function X : (Ω,F) → (E, E) is measurable if and only if the function f : (Ω,F) → (VX , E|VX

) is
measurable, where VX = im(X) ⊂ E and

E|VX
= {A ∩VX | A ∈ E}.

Remark. For any countable VX ⊂ R and any σ-algebra ER on R containing {x} for each x ∈ R, we have

ER|VX
= P(VX).
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Proposition (Measurability Criterion). Let X : Ω → R be a function which takes at most countably many
values VX = im(X) ⊂ R, and let ER be any σ-algebra on R as above. The function X : Ω → R is measurable
if and only if

{X = x} = X−1({x}) ∈ F for each x ∈ VX = im(X) ⊂ R.

Definition (Discrete Random Variable). A discrete random variable is a measurable function X : Ω → R
which takes at most countably many values VX ⊂ R. Measurability ensures that P(X = x) is defined for
each x ∈ VX .

Remark. Let (Ω,F ,P) be a probability space, and let X : Ω → R be a discrete random variable with a
(countable) set of possible values VX ⊂ R.

We can equivalently view the function X : Ω → VX , and thus VX becomes a probability space with
respect to

PX(A) = P(X−1(A)).

Definition (Probability Mass Function). The probability mass function fX : VX → [0, 1] is the function
defined as

fX(x) = PX({x}) = P(X−1({x})) = P({X = x}).

Since VX is a discrete measurable space, specifying the measure PX is equivalent to specifying the summable
series {PX({x})}x∈VX

or equivalently the probability mass function fX : VX → [0, 1].

Example (Binomial Distribution). Let Ω = {H,T}n be the sample space for n independent flips of a coin,
where p is the probability of heads and q = 1 − p is the probability of tails. Let X : Ω → Z represent the
number of heads. Then

VX = {0, 1, . . . , n},

and the probability mass function is given by

fX(x) =

(
n

x

)
pxqn−x, x ∈ VX .

Proposition (Geometric Distribution). Let X be the number of independent coin flips required to obtain
the first head, where the probability of heads is p ∈ (0, 1) (and q = 1 − p is the probability of tails). Then
X takes values in {1, 2, 3, . . . } with probability mass function

P (X = k) = q k−1p, k = 1, 2, 3, . . . .

In particular, note that
∞∑
k=1

P (X = k) = p

∞∑
k=0

qk =
p

1− q
=

p

p
= 1,

so this indeed defines a valid probability distribution.

Proposition (Negative Binomial Distribution). Let r ∈ N and consider the experiment of flipping a coin
with probability p ∈ (0, 1) of heads (and q = 1 − p of tails) until the rth head occurs. Define X to be the
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number of flips required. Then X takes values in {r, r + 1, r + 2, . . . } and its probability mass function is
given by

P (X = x) =

(
x− 1

r − 1

)
q x−rpr, x = r, r + 1, r + 2, . . . .

In the special case r = 2, this formula becomes

P (X = x) = (x− 1)q x−2p2, x = 2, 3, 4, . . . .

Definition (Expected Value). Let X : Ω → R be a random variable with range

VX = im(X) ⊂ R,

the set of possible values taken by X. The expected value of X is defined as

E(X) =
∑
x∈VX

xP (X = x),

whenever the above sum converges absolutely.

Proposition. Let (Ω,F ,P) be a probability space and let X : Ω → R be a discrete random variable with
range

VX = im(X) ⊂ R,

and with induced probability measure PX on VX . Consider any measurable function h : R → R (for example,
a continuous function). Then the composition

Y = h ◦X : Ω → R

defines a discrete random variable on Ω. In particular, the range of Y is

VY = h(VX),

and Y induces a probability measure PY on VY by

PY (A) = P
(
Y −1(A)

)
, for all A ⊆ VY .

Theorem. Using the notation above, consider the restriction

h|VX
: VX → R,

which may be viewed as a random variable on the probability space (VX ,P(VX),PX). This random variable
induces a measure P̃Y on VY . Then the measures PY and P̃Y agree. In particular, the expected value of
h(X) is given by

E
(
h(X)

)
=
∑
x∈VX

h(x)P
(
X = x

)
.

Proposition. Let (Ω,F ,P) be a probability space, and let X : Ω → R be a discrete random variable.

1. If c(ω) = c ∈ R is a constant function, then

E(c) = c.
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2. For any c1, c2 ∈ R and measurable functions h1, h2 : R → R,

E
(
c1h1(X) + c2h2(X)

)
= c1E

(
h1(X)

)
+ c2E

(
h2(X)

)
.

Definition (Conditional Expectation). Let B ⊆ Ω be an event with P(B) > 0, so that the conditional
probability P(· | B) is well-defined. The expectation of X conditional on B is given by

E(X | B) =
∑
x∈VX

xP(X = x | B).

Proposition. Let {Bi}ni=1 be a finite partition of Ω with P(Bi) > 0 for each i. Then the expectation of X
satisfies the law of total expectation:

E(X) =

n∑
i=1

E(X | Bi)P(Bi).

Definition (Variance). Variance measures how far the values of a random variable typically deviate from
the mean µ = E(X), or geometrically, how ”spread out” the probability mass function fX is.

A naive guess for this measure might be E(X − µ), but since

E(X − µ) = E(X)− E(µ) = 0,

the positive and negative deviations cancel out. Instead, we define the variance of X as

σ2
X = E

(
(X − µ)2

)
.

This expression ensures that all deviations from µ are weighted positively, providing a meaningful measure
of dispersion.

Proposition (Computing Variance). For a discrete random variable X with probability mass function fX ,

E(h(X)) =
∑
x∈VX

h(x)P(X = x).

Applying this to h(X) = (X − µ)2, we obtain

σ2
X = E

(
(X − µ)2

)
=
∑
x∈VX

(x− µ)2P(X = x).

Definition (Poisson Distribution). The Poisson distribution models the number of times an event occurs
in a fixed time interval, assuming events occur independently and at a constant mean rate λ > 0. It arises
as the limit of a binomial process where the number of sub-intervals tends to infinity while the probability
of an event in each sub-interval tends to zero.

A random variable X follows a Poisson distribution with parameter λ if

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . .
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Proposition. The variance of a random variable X satisfies the identity:

σ2(X) = E(X2)− E(X)2 = E(X2)− µ2.

Proposition. Let (Ω,F ,P) be a probability space and (E0, E0), (E1, E1) measurable spaces. Suppose that

X : Ω → E0 and h : E0 → E1

are measurable. Then the composition
Y = h ◦X : Ω → E1

is measurable and the induced measure PY on E1 satisfies

PY (A) = P
(
{ω ∈ Ω : Y (ω) ∈ A}

)
= P

(
{ω ∈ Ω : X(ω) ∈ h−1(A)}

)
for all A ∈ E1.

In particular, if E1 = R and E0 (and thus Y ) is discrete, then

E(Y ) =
∑
y∈VY

y PY ({y}) =
∑
e∈E0

h(e)PX({e}).

Moreover, given discrete random variables X1, X2 : Ω → R, define

X = (X1, X2) : Ω → VX1
× VX2

,

with
PX

(
(x1, x2)

)
= P

(
{X1 = x1} ∩ {X2 = x2}

)
.

Then for any measurable function h : R2 → R we have

E
(
h(X1, X2)

)
=

∑
(x1,x2)∈VX1

×VX2

h(x1, x2)P
(
{X1 = x1} ∩ {X2 = x2}

)
.

Proposition (Basic Properties of Joint Distributions). Let (Ω,F ,P) be a probability space and let X,Y :
Ω → R be discrete random variables. Define the joint probability mass function

fX,Y (x, y) = P
(
{X = x} ∩ {Y = y}

)
, (x, y) ∈ VX × VY .

Then:

(i) X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

for all (x, y) ∈ VX × VY .

(ii) For any function h : R2 → R, the expectation is given by

E
(
h(X,Y )

)
=

∑
(x,y)∈VX×VY

h(x, y) fX,Y (x, y) =
∑
x∈VX

∑
y∈VY

h(x, y) fX,Y (x, y).

(iii) The marginal distribution of X is determined by

fX(x) = P
(
X = x

)
=
∑
y∈VY

fX,Y (x, y).
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(iv) In particular, if h(x, y) = g(x) depends only on x, then

E
(
g(X)

)
=

∑
(x,y)∈VX×VY

g(x) fX,Y (x, y) =
∑
x∈VX

g(x)

∑
y∈VY

fX,Y (x, y)

 =
∑
x∈VX

g(x) fX(x).

Proposition (Properties of Expectation for Discrete Random Variables). Let (Ω,F ,P) be a probability
space and X,Y : Ω → R be discrete random variables. Then:

1. For any measurable functions g, h : R → R,

E
(
g(X) + h(Y )

)
= E

(
g(X)

)
+ E

(
h(Y )

)
.

2. If X and Y are independent, then
E(XY ) = E(X)E(Y ).

3. X and Y are independent if and only if for any measurable functions g, h : R → R,

E
(
g(X)h(Y )

)
= E

(
g(X)

)
E
(
h(Y )

)
.

4. If X and Y are independent, then

E
(
(X − µX)(Y − µY )

)
= 0,

and consequently,
σ2(X + Y ) = σ2(X) + σ2(Y ).

Definition (Covariance). Let X and Y be random variables with means µX = E(X) and µY = E(Y ). The
covariance of X and Y is defined by

σ(X,Y ) = E
(
(X − µX)(Y − µY )

)
=

∑
(x,y)∈VX×VY

(x− µX)(y − µY ) fX,Y (x, y),

where fX,Y (x, y) = P({X = x} ∩ {Y = y}). This measure is positive when X and Y tend to deviate above
or below their means simultaneously, and negative when they deviate in opposite directions.

Proposition. If X and Y are independent, then σ(X,Y ) = 0. (Note that the converse is not true.)

Proposition (Linear Regression: Estimation of the Regression Slope). Let X and Y be random variables
with means µX = E(X) and µY = E(Y ), variance σ2(X), and covariance σ(X,Y ). In modeling the
relationship between X and Y by the linear model

Y = µY + b (X − µX),

the least-squares criterion leads to the unique optimal slope

b =
σ(X,Y )

σ2(X)
.

In other words, the line Y = µY + b (X − µX) minimizes the expected squared error

K(b) = E
[
(Y − µY − b (X − µX))2

]
.
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Moreover, when applied to sample data {(xi, yi)}Ni=1 with sample means

µ̂X =
1

N

N∑
i=1

xi and µ̂Y =
1

N

N∑
i=1

yi,

the regression slope is estimated by

b̂ =

∑N
i=1(xi − µ̂X)(yi − µ̂Y )∑N

i=1(xi − µ̂X)2
.

5 Measure Theoretic Integration

Definition (Outer Measure). The outer measure of a subset A ⊂ Rn is defined by

λ∗(A) = inf
∞∑
k=1

vol(Ck),

where the infimum is taken over all countable collections of sets C1, C2, · · · ⊂ Rn satisfying

A ⊂
∞⋃
k=1

Ck.

Definition (λ∗-Measurable Sets). A set A ⊂ Rn is called λ∗-measurable if for every B ⊂ Rn, we have

λ∗(B) = λ∗(A ∩B) + λ∗(Ac ∩B).

Remark. This measurability condition turns out to be equivalent to an inner-measure equals outer-measure
type equality, similar to the criterion for Riemann integrability.

Proposition. Any countable set has outer measure zero.

Proposition. Any set of outer measure zero is measurable.

Proposition. The collection F of all λ∗-measurable sets is a σ-algebra, and the function λ∗ restricted to F
defines a measure λ.

Definition. The measure λ is called the Lebesgue measure.

Proposition. If C is a cube in Rn, then C ∈ F , and its Lebesgue measure satisfies

λ(C) = vol(C).
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Definition (Indicator Function). Let (Ω,F , µ) be a measure space and fix a set A ∈ F . The indicator
function of A is the function 1A : Ω → R defined by

1A(ω) =

{
1, if ω ∈ A,

0, if ω ∈ Ac.

Proposition. For any indicator function 1A, we define its integral as∫
Ω

1A(ω)dµ(ω) = µ(A).

Definition (Simple Function). A simple function is a function of the form

f =

n∑
i=1

ai1Ai
,

where ai ∈ R and Ai ∈ F .

Proposition. For any simple function f , its integral is defined as∫
Ω

f(ω)dµ(ω) =

n∑
i=1

ai · µ(Ai).

Remark. Any random variable X : Ω → R with a finite range of values is a simple function. The above
integral formula agrees with the expected value formula:

E[X] =

n∑
i=1

ai · µ(Ai),

where Ai = X−1({ai}).

Definition (Decomposition of a Measurable Function). Let f : Ω → R be a measurable function. We can
write

f = f+ − f−,

where f+, f− : Ω → R are measurable and nonnegative, given by

f+ = max(f, 0), f− = max(−f, 0).

Theorem. Let f : Ω → R be a nonnegative function. Then f is measurable if and only if it is the limit of
an increasing sequence of nonnegative simple functions.
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Definition (Lebesgue Integral for Nonnegative Functions). Let (fn)n≥1 be an increasing sequence of non-
negative simple functions such that fn → f pointwise. Then the integral of f is defined as∫

Ω

f(ω)dµ(ω) = lim
n→∞

∫
Ω

fn(ω)dµ(ω).

Definition (Lebesgue Integral for General Functions). For an arbitrary measurable function f : Ω → R,
write f = f+ − f−. The integral of f is then defined as∫

Ω

f(ω)dµ(ω) =

∫
Ω

f+(ω)dµ(ω)−
∫
Ω

f−(ω)dµ(ω),

provided that at least one of the integrals on the right-hand side is finite.

Theorem. Every Riemann integrable function is measurable, and its Lebesgue integral equals its Riemann
integral.

Proposition. The collection F of all λ∗-measurable sets is a σ-algebra, and the function λ∗ restricted to F
defines a measure λ.

Proposition. Every set B ⊂ Rn with λ∗(B) = 0 is measurable.

Definition. The Borel σ-algebra on Rn, denoted B(Rn), is the σ-algebra generated by all open sets U ⊂ Rn.

Proposition. Every open subset of Rn is λ-measurable.

Corollary. We have the inclusion
B(Rn) ⊂ F ,

so the measure λ restricts to a measure on (Rn,B(Rn)).

Remark. It turns out that F is the completion of B(Rn). This means that F includes all sets in B(Rn)
along with additional subsets of null sets. While this makes F larger and more inclusive, it can also make
the measurability of functions mapping into Rn more challenging.

6 General Random Variables and Cumulative Distribution Func-
tions

Definition (Random Variable). Let (Ω,F , P ) be a probability space and let (R,B(R)) be the Borel mea-
surable space. A random variable (R.V.) is a measurable function

X : (Ω,F) → (R,B(R)).
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Corollary. A random variable X defines a probability measure PX on (R,B(R)) by

PX(B) = P (X−1(B)), ∀B ∈ B(R).

Proposition. The Borel σ-algebra B(R) is generated by the collection of half-rays (−∞, x] for x ∈ R.

Corollary. A function X is a random variable if and only if for all x ∈ R,

{X ≤ x} := X−1(−∞, x] ∈ F .

Remark. This condition is the reason for the definition of a random variable found in standard probability
textbooks.

Definition (Cumulative Distribution Function). The cumulative distribution function (CDF) of a
random variable X is the function FX : R → [0, 1] given by

FX(x) = PX((−∞, x]) = P ({X ≤ x}).

Lemma. Let (An)n≥1 be an increasing sequence of events, i.e., A1 ⊂ A2 ⊂ . . . , or let (Bn)n≥1 be a
decreasing sequence of events, i.e., B1 ⊃ B2 ⊃ . . . . Then

lim
n→∞

P (An) = P

( ∞⋃
i=1

Ai

)
,

lim
n→∞

P (Bn) = P

( ∞⋂
i=1

Bi

)
.

Corollary. The cumulative distribution function satisfies

lim
x→∞

FX(x) = 1, lim
x→−∞

FX(x) = 0.

Corollary. The function FX(x) is right-continuous, but not necessarily continuous.

7 Absolute Continuity and Continuous Random Variables

Let (E, E) be a measurable space, µ a measure on (E, E), and let f : E → R be a positive, measurable
function. Then:
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Proposition. The function νf : E → R given by

νf (A) =

∫
A

f dµ =

∫
E

1A · f dµ

defines a measure on (E, E).

Definition (Absolute Continuity). Let (E, E) be a measurable space, and let µ and ν be measures on (E, E).
We say that ν is absolutely continuous with respect to µ, written ν ≪ µ, if

µ(A) = 0 implies ν(A) = 0, ∀A ∈ E .

Proposition. The measure νf defined above is absolutely continuous with respect to µ.

Theorem (Radon-Nikodym Theorem). Let ν be a measure that is absolutely continuous with respect to µ,
and assume that µ is σ-finite. Then there exists a measurable function f : E → R such that

ν(A) =

∫
A

f dµ, ∀A ∈ E .

The function f is called the Radon-Nikodym derivative and is denoted by

dν

dµ
.

Remark. The Radon-Nikodym derivative dν
dµ is unique up to redefinition on a set of µ-measure zero.

Let (Ω,F , P ) be a probability space.

Definition (Continuous Random Variable). A random variable X : Ω → R is called continuous if the
induced measure PX on (R,B(R)) is absolutely continuous with respect to the Lebesgue measure λ.

Equivalently, there exists a measurable function fX : R → R such that for all A ∈ B(R),

PX(A) =

∫
A

fX dλ =

∫
A

fX(x) dx.

Definition (Probability Density Function). The function fX : R → R is called the probability density
function (PDF) of X.

Remark. It suffices to check the above condition for A = (−∞, x], i.e.,

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(u) du.

16



Remark. By the Fundamental Theorem of Calculus, this implies that

d

dx
FX(x) = fX(x).

Remark. Conversely, given any positive, measurable function f : R → R such that∫
R
f(x) dλ(x) = 1,

we can define FX as above, or equivalently define the induced measure PX .

Theorem (Jacobian Formula). Let X and Y be jointly continuous with joint density function fX,Y , and let

D = {(x, y) : fX,Y (x, y) > 0}.

If the mapping T given by
T (x, y) = (u(x, y), v(x, y))

is a bijection from D to the set S ⊆ R2, then (subject to the previous conditions) the pair (U, V ) =
(u(X,Y ), v(X,Y )) is jointly continuous with joint density function

fU,V (u, v) =

{
fX,Y (x(u, v), y(u, v)) |J(u, v)| , if (u, v) ∈ S,

0, otherwise.

Proof. You should not worry overmuch about the details of this argument. Suppose that A ⊆ D and
T (A) = B. Since T : D → S is a bijection,

P((U, V ) ∈ B) = P((X,Y ) ∈ A).

However,

P((X,Y ) ∈ A) =

∫∫
A

fX,Y (x, y) dx dy by Theorem 6.22.

Using the change of variables formula,

P((X,Y ) ∈ A) =

∫∫
B

fX,Y (x(u, v), y(u, v)) |J(u, v)| du dv.

By (6.52), we conclude

P((U, V ) ∈ B) =

∫∫
B

fU,V (u, v) du dv.

Let (Ω,F , P ) be a probability space, and let X : Ω → R be a random variable. Given a measurable
function h : R → R, we define another random variable Y = h ◦X : Ω → R.

By the pushforward measure transformation, we have:

PY := Y∗P = h∗X∗P = h∗PX ,

which implies that for any measurable set A ∈ B(R),

PY (A) = P (Y −1(A)) = P (X−1(h−1(A))) = PX(h−1(A)).
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Proposition. Let h : R → R be a differentiable and strictly increasing function on the support of X,
denoted VX ⊂ R. Then Y = h(X) = h◦X is a continuous random variable with probability density function
given by:

fY (y) = fX(h−1(y)) · d

dy
h−1(y).

Remark. This result is compatible with the general transformation formula for probability measures. Specif-
ically, we have:

PX(h−1(A)) =

∫
x∈h−1(A)

fX(x) dx

which, via the change of variables y = h(x), transforms into:

PY (A) =

∫
y∈A

fX(h−1(y))
d

dy
h−1(y) dy.

Let (Ω,F , P ) be a probability space, and let X : Ω → R be a random variable.

Definition (Expected Value). The expected value of X, denoted E[X], is defined as

E[X] =

∫
Ω

X dP =

∫
ω∈Ω

X(ω)dP (ω),

where integration is defined in the measure-theoretic sense.

Remark. For discrete random variables, which take countable values, the expected value reduces to:

E[X] =
∑
x∈VX

x · P (X = x) =
∑
x∈VX

x · fX(x).

Remark. For continuous random variables, the expected value is given by:

E[X] =

∫
R
xfX(x) dx.

Proposition (Expectation of a Function of a Random Variable). Let X : Ω → R be a random variable, and
let h : R → R be a measurable function. Define Y = h(X). Then the expectation of Y is given by:

E[Y ] = E[h(X)] =

∫
R
h(x)fX(x) dx.

Remark. This is the continuous analogue of the discrete case:

E[h(X)] =
∑
x∈VX

h(x)fX(x).
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Definition (Poisson Distribution). Consider a process where events occur continuously in time, with the
number of subintervals n tending to infinity while the probability of an event occurring in any subinterval
tends to zero. The probability mass function for the total number of events is given by:

P (X = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

.

Taking the limit as n → ∞, we obtain:

n!

(n− k)!

1

nk
→ 1, and

(
1− λ

n

)n−k

→ e−λ.

Thus, we define the Poisson distribution as:

P (X = k) =
λk

k!
e−λ, k ∈ Z≥0.

Formally, let VX = Z≥0 and define fX : VX → R≥0 by:

fX(x) =
λx

x!
e−λ.

The resulting measure PX satisfies:

E[X] = λ, and Var(X) = λ.

Definition (Stationary Poisson Counting Process). A stationary Poisson counting process of rate λ is a
stochastic process {Nt : Ω → Z≥0}t∈R≥0

satisfying the following conditions:

• (Normalization) N0 = 0.

• (Increasing) Nt −Ns takes non-negative values for s < t.

• (Independent increments) The random variables Nt −Ns1 and Ns1 −Ns0 are independent for any
0 ≤ s0 < s1 < t (similarly, increments are mutually independent for multiple disjoint intervals).

• (Poisson property) Nt −Ns is Poisson distributed with mean λ(t− s).

Proposition (Arrival Times and the Exponential Distribution). Let {Nt : Ω → Z≥0}t∈R≥0
be a Poisson

counting process of rate λ. Each random variableNt follows a Poisson distribution with mean λt, representing
the number of arrivals occurring in the interval [0, t].

Consider the random variable X1 : Ω → R≥0 representing the time of the first arrival, defined as:

{X1 ≤ t} := {Nt ≥ 1}.

That is, for an outcome ω ∈ Ω, the first arrival X1(ω) occurs at time ≤ t if and only if the number of arrivals
Nt(ω) up to time t is at least 1.

The cumulative distribution function of X is given by:

FX(x) = P (X ≤ x) = P (Nx ≥ 1) = 1− P (Nx = 0).

Since Nx follows a Poisson distribution with mean λx, we have:

P (Nx = 0) = e−λx.
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Thus,
FX(x) = 1− e−λx.

Differentiating, we obtain the probability density function:

fX(x) =
d

dx
FX(x) = λe−λx.

Proposition (Basic Properties of the Exponential Distribution). Let θ = 1
λ , and let X be a continuous

random variable with support VX = R≥0 and probability density function:

fX(x) =
1

θ
e−x/θ, x ≥ 0.

The exponential distribution satisfies the following properties:

1. Expectation: The expected value of X is given by:

E[X] =

∫ ∞

0

xfX(x) dx.

Substituting fX(x) and using integration by parts, we obtain:

E[X] = θ.

2. Variance: The variance of X is given by:

Var(X) = E[X2]− (E[X])2.

Computing E[X2] via integration by parts and simplifying, we find:

Var(X) = θ2.

3. Memoryless Property: The exponential distribution satisfies:

P (X > t+ s | X > s) = P (X > t).

By definition of conditional probability,

P (X > t+ s | X > s) =
P (X > t+ s)

P (X > s)
.

Since P (X > x) =
∫∞
x

fX(u) du = e−x/θ, we compute:

P (X > t+ s | X > s) =
e−(t+s)/θ

e−s/θ
= e−t/θ = P (X > t).

This property encodes a type of sunk-cost fallacy : given that one has already waited s minutes with
no occurrences, the probability of waiting an additional t minutes is the same as if one had just started
waiting.
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Experiment Type Fixed Period Until 1st Success Until αth Success

Coin Flipping Binomial Geometric Negative Binomial

Continuous Arrivals Poisson Exponential Gamma

Definition (Gamma Distribution and Gamma Function). The Gamma distribution generalizes the expo-
nential distribution and arises in the context of waiting times until the αth event in a Poisson process.

A Gamma-distributed continuous random variable W with shape parameter α > 0 and scale parameter
θ > 0 has the probability density function:

fW (w) =
wα−1

θαΓ(α)
e−w/θ, w > 0.

When α ∈ Z≥1, this simplifies to:

fW (w) =
wα−1

θα(α− 1)!
e−w/θ.

The Gamma function Γ : R>0 → R is defined as:

Γ(α) =

∫ ∞

0

yα−1e−y dy.

This function extends the factorial to non-integer values, satisfying:

Γ(1) = 1, and Γ(z + 1) = zΓ(z).

As a consequence, for integer values α ∈ Z≥1, we recover:

Γ(α) = (α− 1)!.

The Gamma distribution has expectation and variance given by:

E[W ] = αθ, Var(W ) = αθ2.

Definition (Chi-Square Distribution). The chi-square distribution, denoted χ2
r, with r degrees of freedom,

is a special case of the Gamma distribution with parameters:

α =
r

2
, θ = 2.

Explicitly, the probability density function is given by:

fX(x) =
1

Γ(r/2)2r/2
x(r/2)−1e−x/2, x > 0.

By the properties of the Gamma distribution, the expectation and variance of X are:

E[X] = αθ = r, Var(X) = αθ2 = 2r.

While the chi-square distribution may seem abstract in this formulation, it plays a fundamental role
in statistical theory. It describes the distribution of the sum of squares of r independent standard normal
random variables, making it essential in hypothesis testing, confidence intervals, and variance estimation.
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8 Generating Functions

Definition (Generating Function). A generating function of a random variable X taking values in Z≥0

is defined as:

GX(x) =

∞∑
k=0

P(X = k)xk.

(Good theorem: Power series converges in radius R).

Proposition. Let X and Y be independent random variables. Then their generating functions satisfy:

GX+Y (x) = GX(x)GY (x).

Proof. Consider the coefficient of xn on the left-hand side:

LHS[xn] = P(X + Y = n).

By the law of total probability, we sum over all possible values of X:∑
k

P(X = k, Y = n− k).

Since X and Y are independent, this factorizes as:∑
k

P(X = k)P(Y = n− k).

This is precisely the coefficient of xn in the right-hand side:

RHS[xn].

Hence, the two generating functions satisfy the claimed equality.

Definition (Convolution). A convolution of two sequences (an)
∞
n=0 and (bn)

∞
n=0 is the sequence defined by:

(a ∗ b)n =
∑
k≤n

akbn−k =

n∑
k=0

akbn−k.

Proposition. The probability mass function of the sum of two independent discrete random variables is
given by the convolution:

(P(X + Y = n))
∞
n=0 = P(X = n) ∗ P(Y = n).

Definition. For functions f, g : R → R, the convolution is defined as:

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t) dt.
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Proposition. If X and Y are independent random variables with density functions fX(x) and gX(x), then
their sum Z = X + Y is a continuous random variable with density given by the convolution:

f ∗ g.

Proof. We compute the probability:
P(Z ≤ t) = P(X + Y ≤ t).

By integrating over the joint density,

P(Z ≤ t) =

∫ ∞

−∞

∫ t−x

−∞
f(x)g(y) dy dx.

Using the transformation Z = X + Y , Y = Z −X, we get:

P(Z ≤ t) =

∫ ∞

−∞

∫ ∞

−∞
f(x)g(z − x) dx dz.

Since the Jacobian determinant of the transformation is 1, we obtain the convolution formula for the density:

fZ(z) =

∫ ∞

−∞
f(x)g(z − x) dx.

Proposition. If X and Y are independent continuous random variables, then their density satisfies:

fX+Y (t) = fX ∗ fY (t).

Proof. By the definition of convolution,
g ∗ f(t) = f ∗ g(t),

so we compute: ∫ ∞

−∞
g(x)f(t− x) dx.

Making the substitution y = t− x, so that dy = −dx, we rewrite the integral as:∫ ∞

−∞
f(y)g(t− y) dy.

This confirms the convolution formula for independent continuous random variables.
Moreover, this definition is well-defined in the sense that convolution satisfies associativity:

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Theorem (Central Limit Theorem). Let X1, X2, . . . be independent and identically distributed random
variables with mean 0 and variance σ2. Then,

X1 + · · ·+Xn√
n

d−→ N (0, σ2) as n → ∞.
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Theorem (Nice Properties of Normal Distribution).

N (0, σ2) = N (0, σ2
1) ∗ N (0, σ2

2) ̸= N (0, σ2
2)

for σ2
1 + σ2

2 = σ2.

Theorem (Derivation of the Normal Distribution). 1. ρ(x, y) = f(x)f(y)

2. ρ(x, y) = g
(√

x2 + y2
)

Thus,

f(0) · f(0) = g(0) ⇒ g(x) =
f(x)

f(0)

g
(√

x2 + y2
)
= g(x)g(y)c2

Let h = ln(g) · c2,
h
(√

x2 + y2
)
= h(x) + h(y)

which implies that
j(x2 + y2) = j(x2) + j(y2)

for some function j(x), leading to
j(x) = αx, h(x) = cx2

g(x) = ecx
2

· c

⇒ f(x) = ecx
2

· c

which leads to the well-known Gaussian density function.

Proposition. If g is an increasing function and X is a continuous random variable, then

ρg(X)(g(t)) = ρX(t) · |g′(t)| .

Proof. The cumulative distribution function transformation gives:

Fg(X)(g(t)) = P(X < t) = FX(t).

Differentiating both sides with respect to t,

ρg(X)(g(t)) · g′(t) = ρX(t).

Rearranging, we obtain:

ρg(X)(g(t)) =
ρX(t)

g′(t)
.

Proposition. If g is a decreasing function and X is a continuous random variable, then

ρg(X)(g(t)) =
ρX(t)

−g′(t)
.
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Proof. The cumulative distribution function transformation gives:

Fg(X)(g(t)) = P(g(X) ≤ g(t)) = 1− P(X < t) = 1− FX(t).

Differentiating both sides with respect to t,

ρg(X)(g(t)) · g′(t) = ρX(t).

Rearranging, we obtain:

ρg(X)(g(t)) =
ρX(t)

−g′(t)
.

Theorem (Change of Variables). Suppose g ∈ C1 is a one-to-one function g : U → V , where U, V ⊆ Rn,
and let X be a random variable taking values in U . Then, the density of g(X) is given by

ρg(X)(g(⃗t)) =
ρX (⃗t)

|Jg (⃗t)|
.

Proposition. If X and Y are independent continuous random variables with Y > 0, then their ratio has
the density

ρX/Y (t) =

∫ +∞

−∞
f(x)g

(
t

x

)
dx

x
.

Proof. We begin by computing the cumulative distribution function:

FX/Y (t) = P(X/Y < t).

Rewriting this probability,
FX/Y (t) = P(X,Y ∈ At),

where At is the region satisfying X < tY . Using the joint density ρX,Y (x, y), we express this as the integral

FX/Y (t) =

∫ +∞

−∞

∫ tx

−∞
ρX,Y (u, v) du dv.

Using the transformation u = x, v = xy, the integral changes to

FX/Y (t) =

∫ +∞

−∞

∫ t

−∞
ρX,Y (u, v/u)

du

u
dv.

Differentiating both sides with respect to t, we obtain

ρX/Y (t) =

∫ +∞

−∞
ρX,Y (u, t/u)

du

u
.

Since X and Y are independent, we factorize the joint density:

ρX/Y (t) =

∫ +∞

−∞
ρX(u)ρY (t/u)

du

u
.
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Definition (Normal Distribution). Fix µ ∈ R and σ > 0. We say a continuous random variable X follows
a normal distribution with mean µ and variance σ2, denoted X ∼ N(µ, σ2), if

VX = R, fX(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
.

We will always take as given that
1√
2π

∫
R
e−z2/2 dz = 1,

which is proved by squaring and computing the double integral in radial coordinates.
It is easy to check using the change of variables formula that∫

R
fX(x) dx = 1

in general, and similarly that
E[X] = µ, Var(X) = σ2,

justifying the names.
Mnemonic: If X ∼ N(µ, σ2), then the standardized random variable

Y =
X − µ

σ

follows the standard normal distribution, Y ∼ N(0, 1).

Joint Continuity and Bivariate distributions

Definition (Jointly Continuous Random Variables). Random variables X and Y are jointly continuous
if P (X,Y ) is absolutely continuous with respect to the Lebesgue measure on R2. Equivalently, there exists
a function fX,Y : R2 → R≥0 such that for any measurable set A,

P (X,Y )(A) =

∫
A

fX,Y (x, y) dx dy.

Remark. Equivalently, it suffices to check that the joint cumulative distribution function (CDF) satisfies

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du.

Definition (Marginal Densities). The marginal densities of a jointly continuous random variable (X,Y )
with density fX,Y are given by:

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx.

Proposition. Let X,Y be continuous random variables with densities fX and fY . Recall that X and Y
are independent if and only if their joint cumulative distribution function satisfies

FX,Y (x, y) = FX(x)FY (y).
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Proposition. If X and Y are jointly continuous, then X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

almost everywhere.

Remark. A stronger statement holds: If there exist functions h : R → R and g : R → R such that

fX,Y (x, y) = h(x)g(y),

then we can conclude that h = fX , g = fY , and X,Y are independent.

Definition (Joint CDF). The joint cumulative distribution function (CDF) of random variables X
and Y , denoted FX,Y , is the function FX,Y : R2 → [0, 1] defined by:

FX,Y (x, y) = P (X ≤ x, Y ≤ y).

Equivalently,
FX,Y (x, y) = P(X,Y )((−∞, x]× (−∞, y]).

Remark. The Borel sigma-algebra on R2, denoted B(R2), is generated by sets of the form (−∞, x]×(−∞, y]
for x, y ∈ R. Thus, the function FX,Y faithfully encodes the probability measure P(X,Y ), as we saw with the
univariate CDF FX and the probability measure PX .

Proposition. The joint CDF FX,Y satisfies the following properties:

1. FX,Y is non-decreasing in both x and y.

2. FX,Y is right-continuous in both x and y.

3. lim
x,y→−∞

FX,Y (x, y) = 0 and lim
x,y→+∞

FX,Y (x, y) = 1.

4. lim
x→+∞

FX,Y (x, y) = FY (y) and lim
y→+∞

FX,Y (x, y) = FX(x).

Proposition. The random variables X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R.

Definition (Conditional Density Function). The conditional density function of X given Y is defined
as:

fX|Y (x|y) :=
fX,Y (x, y)

fY (y)

for any fixed y ∈ R such that fY (y) > 0.

Proposition. The function fX|Y (x|y) satisfies the properties of a probability density function (pdf) and
defines a conditional probability measure PX|Y=y on R.
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Proposition. Let (Ω,F , P ) be a probability space, and let X,Y : Ω → R be random variables. Suppose
that (X,Y ) are jointly continuous with density fX,Y . Let h : R2 → R be a measurable function, and define
Z = h(X,Y ). Then, the expected value of Z is given by:

E(Z) = E(h(X,Y )) =

∫
R2

h(x, y)fX,Y (x, y) dx dy.

Proposition (Measure-Theoretic Change of Variables). Let (E1, E1, µ) be a measure space, and let (E2, E2)
be another measurable space. Suppose g : E1 → E2 is measurable. Then, for any measurable function
h : E2 → R such that the integrals converge, we have:∫

e∈E1

(h ◦ g)(e) dµ(e) =
∫
x∈E2

h(x) d(g∗µ)(x),

where g∗µ denotes the pushforward measure µ ◦ g−1.
Applying this to probability spaces, take E1 = Ω, E2 = R2, g = (X,Y ), and µ = P , so that the

pushforward measure g∗µ corresponds to P(X,Y ). This yields the result:

E(h(X,Y )) =

∫
R2

h(x, y)fX,Y (x, y) dx dy.

Definition (Standard Bivariate Normal Distribution). Let X and Y be jointly continuous random variables
with support VX,Y = R2 and joint density function given by:

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
.

Proposition. The function fX,Y integrates to 1, thereby defining a probability measure.
To compute the marginal density fX(x) of X, we use the identity:

x2 − 2ρxy + y2 = x2 − ρ2x2 + ρ2x2 − 2ρxy + y2 = x2(1− ρ2) + (y − ρx)2.

Thus, integrating out y gives:

fX(x) =

∫
R
fX,Y (x, y) dy.

Substituting the density function: ∫
R

1

2π
√

1− ρ2
e
− x2(1−ρ2)+(y−ρx)2

2(1−ρ2) dy.

Recognizing the inner integral as the density of N(ρx, 1− ρ2), which integrates to 1, we obtain:

fX(x) =
1√
2π

e−
x2

2 .

Thus, fX(x) follows N(0, 1), and by symmetry, so does fY (y).
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Definition (General Bivariate Normal Distribution). Fix µX , µY ∈ R and σX , σY > 0. The joint density
function of the bivariate normal distribution is given by:

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp

(
− 1

2(1− ρ2)

((
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
))

.

Proposition. The marginal density fX(x) is computed by a change of variables. Setting ỹ = y−µY

σY
, we

obtain:

fX(x) =
1

σX

√
2π

exp

(
−1

2

(
x− µX

σX

)2
)∫

R

1√
2π(1− ρ2)

exp

(
− (ỹ − ρx)2

2(1− ρ2)

)
dỹ.

Recognizing the inner integral as the density function of N(ρx, 1− ρ2), which integrates to 1, we conclude:

fX(x) =
1

σX

√
2π

exp

(
−1

2

(
x− µX

σX

)2
)
.

Thus, X ∼ N(µX , σ2
X), and by symmetry, Y ∼ N(µY , σ

2
Y ).

Similarly, the conditional density fX|Y (x|y) is normally distributed as:

X|Y ∼ N
(
ρỹ, 1− ρ2

)
.

Finally, we can verify that the covariance satisfies:

σ(X,Y ) = ρσXσY .

Definition. A sequence {Xn : Ω → R} converges almost surely to X : Ω → R if

P
(
{ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

This is a rather strong notion of convergence. Another strong notion, which is neither strictly stronger nor
weaker, is:

Definition. Xn → X in mean square if

lim
n→∞

E
(
(X −Xn)

2
)
= 0.

Both of the preceding are strictly stronger than the following:

Definition. Xn → X in probability if

lim
n→∞

P (|X −Xn| > ε) = 0

for any ε > 0. This is also strictly stronger than:

Definition. Xn → X in distribution if

lim
n→∞

FXn
(x) = FX(x)

for every point x ∈ R at which FX is continuous.
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Theorem (Law of Large Numbers). The law of large numbers encodes the idea that if we have samples
x1, . . . , xn from some abstract distribution X, the sample mean

x̄ =
1

n
(x1 + · · ·+ xn) → µ = E(X) as n → ∞.

This is an abstract theorem in the following sense:
Let X1, . . . , Xn be independent, identically distributed random variables with finite mean µ and variance

σ2. Then the random variable

Xn =
1

n
(X1 + · · ·+Xn)

satisfies Xn → µ in mean square.
Thus, as n → ∞, this random variable converges (in mean square) to the deterministic (i.e., constant)

random variable taking the value µ.

Proposition. In a sense, we can interpret this as a drawback of the sample mean: In the limit where
the number of samples n → ∞, the random variable Xn contains only the information of the mean µ.
Heuristically, this is because the difference

lim
n→∞

Xn − µ = lim
n→∞

X1 + · · ·+Xn − nµ

n
= 0

is dominated by the denominator n. We can also see that the distribution is becoming very peaked because
the variance → 0:

σ2(Xn) = σ2

(
1

n
(X1 + · · ·+Xn)

)
=

1

n2
σ2(X1 + · · ·+Xn) =

σ2(X)

n
.

Again, the factor 1
n from the definition of the mean dominates! The random variable X1 + · · ·+Xn doesn’t

converge to anything, as its variance

σ2(X1 + · · ·+Xn) = nσ2(X)

goes to infinity as n → ∞.
In summary, the denominator n dominates in the limit

lim
n→∞

Xn − µ = lim
n→∞

X1 + · · ·+Xn − nµ

n
= 0,

while X1 + · · ·+Xn − nµ has variance nσ2(X) → ∞ as n → ∞.
Motivated by this, we consider the distribution of the stable ratio

Yn =
X1 + · · ·+Xn − nµ√

n
,

which satisfies
σ2(Yn) = σ2(X).

Taking the limit n → ∞ while holding the variance constant, we obtain the following theorem.

Theorem (Central Limit Theorem). Let X1, X2, . . . , Xn be independent, identically distributed random
variables with finite mean µ and variance σ2. Then the sequence of random variables

Yn =
X1 + · · ·+Xn − nµ√

n

converges in distribution to a normal distribution with mean 0 and variance σ2(X):

Yn
d−→ N(0, σ2).
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Combinatorics Applications

Proposition (The Probabilistic Method). We want to construct an object with a desirable property, but
direct construction may be difficult. Instead, we take a random such object. If none of these objects satisfy
the desired property, then

P(random object is nice = 0).

However, if
P(random object is nice > 0),

then at least one such object must exist.

Definition (Ramsey Number). Let Kn denote the complete graph on n vertices, where every pair of vertices
is connected by an edge. Consider an edge coloring where each edge is colored either red or blue.

We define the Ramsey number R(k, ℓ) as the smallest integer n such that in any red-blue edge coloring
of Kn, there exists either:

• a subset of k vertices where all edges between them are red, or

• a subset of ℓ vertices where all edges between them are blue.

Theorem. The Ramsey number R(k, ℓ) is always finite.

Example. We have the specific values:

R(3, 3) = 6, R(5, 5) (unknown).

Theorem. For all k ≥ 3, the Ramsey number satisfies the bound:

R(k, k) > 2k/2 − 1.

Definition (Tournament). A tournament is a directed complete graph, where every player (vertex) plays
every other player, and an arrow points to the winner.

Remark. Tournaments can be used to produce rankings, starting from the lowest-ranked player, by hitting
every vertex exactly once in a path.

Definition (Hamiltonian Path). A Hamiltonian path is a path that visits each vertex exactly once.

Theorem. Every tournament has at least one Hamiltonian path. Moreover, it is also possible to construct
a tournament with only one Hamiltonian path.

Theorem. There is always a tournament on n vertices with at least

n!

2n−1

Hamiltonian paths.
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Definition. Given sets S1, S2, . . . , Sm ⊆ X, we say that H is a hitting set if it intersects all the sets, i.e.,

H ∩ Si ̸= ∅, ∀i.

We will assume |Si| = k.

Example. • H1 = X1, . . . , X3.

• Any H2 ⊆ X1, . . . , X3.

• |H2| = n− k + 1 by the pigeonhole principle.

• If H1 is chosen randomly, then H = Xh1 , . . . , X3 where hi ∈ Si.

Theorem. Given sets S1, . . . , Sr, there exists a hitting set of size at most⌈
n logm

k

⌉
.
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