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1 1D Discrete Time (Difference Equations)

Theorem (Difference Equation for Population Growth of One Species). Let Nk denote the population at
the k-th time interval (after k∆t), where N0 is the initial population. The population growth follows the
difference equation:

Nk+1 = Nk + b∆tNk −m∆tNk

where:

• b is the birth rate per unit time,

• m is the mortality rate per unit time,

• ∆t is the time interval.

This can be expressed as:

Nk = (1 +R0∆t)kN0

where R0 = b−m is the net reproductive rate. Depending on the values of b and m:

• If b > m, R0 > 0, indicating exponential growth.

• If b < m, R0 < 0, indicating exponential decay.

Thus, Nk can be determined for any k ≥ 0 given N0, ∆t, and R0.

Definition (Pharmacokinetics). Pharmacokinetics is the study of how drugs are absorbed, distributed,
metabolized, and eliminated by the body. It involves the quantitative analysis of drug concentrations in
various body compartments over time. The main parameters include absorption rates, distribution volumes,
metabolism rates, and elimination half-lives, all of which help in understanding the drug’s behavior within
the body.

In mathematical modeling, pharmacokinetics often uses differential equations or difference equations to
represent the concentration of a drug over time, taking into account factors such as dosage intervals and
elimination rates.

Example (Pill Dosage and Steady-State Concentration). Consider a patient taking a pill at regular intervals.
Let Pk denote the drug concentration in the body after the k-th dose. The difference equation for the
concentration might look like:

Pk+1 = f(Pk)

where f is a function representing the change in drug concentration based on factors such as drug
absorption and elimination.
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If Pk converges as k → ∞, we denote the steady-state concentration by P̂ . We find P̂ by solving:

P̂ = f(P̂ )

This fixed point represents the long-term concentration level that the drug stabilizes at if doses are
administered consistently. For the specific example in the notes, the difference equation might be:

P̂ = (0.7575)P̂ + 40

where 0.7575 represents the fraction of the drug retained in the body after one interval, and 40 represents
the amount of the drug added with each dose. Solving this equation yields the steady-state concentration.

2 2D Discrete Time (Leslie Matrices)

Definition (Leslie Matrix). A Leslie matrix is a square matrix used to model age-structured population
dynamics, incorporating age-specific fertility and survival rates.

L =


F1 F2 · · · Fn−1 Fn

S1 0 · · · 0 0
0 S2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Sn−1 0



Definition (Stable Age Distribution). The stable age distribution is the proportion of individuals in each
age class that remains constant over time when a population grows at a constant rate, assuming age-specific
fertility and survival rates are fixed.

Theorem (Stable Age Distribution Using the Leslie Matrix). Given a Leslie matrix L and the population

vector N⃗k at time k, the stable age distribution w⃗ is the eigenvector corresponding to the dominant eigenvalue
λ of L, where λ represents the population growth rate as t → ∞. The stable age distribution is reached
when:

N⃗k = λkw⃗

as k → ∞, indicating that the population distribution grows proportionally at the rate λ.

Theorem (Transition to Differential Equation). Starting with the discrete model:

N(t+∆t) = N(t) + bN(t)∆t− dN(t)∆t

we want ∆t to be small to avoid multiple births/deaths within the time interval, thus taking ∆t → 0.
Rearranging the equation, we have:

N(t+∆t)−N(t)

∆t
= bN(t)− dN(t)

Taking the limit as ∆t → 0, assuming it exists, yields the differential equation:
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dN

dt
= bN − dN or

dN

dt
= RN

where R = b− d represents the net growth rate of the population.

3 1D Differential Equation Models

Example (Linear Growth Model). Consider the differential equation for population growth:

dN

dt
= R

where R is the net growth rate. The solution to this differential equation is:

N(t) = Rt+ C

where C is the constant of integration. If we know the initial population N(0) = C, then N(t) = Rt+N0,
where N0 is the initial population size.

• If R > 0, then N(t) → ∞ as t → ∞.

• If R < 0, then N(t) → −∞ as t → ∞.

Note: For R < 0, N(t) approaching −∞ is not realistic in a population model; instead, the population
would approach zero.

Example (Linear Population Growth as a Function of Population). If the growth rate is a linear function
of the population size, we have:

dN

dt
= rN(t)

where r is a constant. The solution is:

N(t) = Cert

with C determined by the initial population N(0) = C. This describes exponential growth or decay
depending on the sign of r.

Example (Logistic Equation). To incorporate a maximum population, the logistic equation is used:

dN

dt
= rN(t)

(
1− N(t)

k

)
= rN(t)− rN(t)2

k

where k is the carrying capacity, the maximum population that can be sustained by the environment.
When N(t) = k, dN

dt = 0, indicating no population growth.
The carrying capacity represents the population size that the environment’s resources can support. This

model is nonlinear, making it challenging to solve analytically, so it is often analyzed graphically or numeri-
cally.
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Definition (Phase Portrait). A phase portrait is a graphical representation of the trajectories of a dynamical
system in the phase plane, illustrating the behavior of solutions over time for different initial conditions. It
shows equilibrium points, stability, and the nature of the system’s behavior.

N

dN
dt

0 k

Example: The phase portrait above shows the behavior of the logistic growth model dN
dt = rN

(
1− N

k

)
.

The equilibrium points are at N = 0 (unstable) and N = k (stable). Arrows indicate the direction of
trajectories as the population N approaches or moves away from these points.

Example (Classifying Fixed Points of the Logistic Equation). Consider the logistic equation:

Ṅ = rN

(
1− N

k

)
= f(N)

We have two fixed points:
x∗ = 0 and x∗ = k

To determine their stability, we find the derivative:

f ′(N) = r − 2rN

k
Evaluating at the fixed points:

• f ′(0) = r > 0: The fixed point at N = 0 is unstable.

• f ′(k) = −r < 0: The fixed point at N = k is stable.

Example (Logistic Equation with the Allee Effect). A small population may not be able to survive due to
other influences (e.g., competitors stealing all the food). To incorporate this, we modify our logistic model
as follows:

Ṅ = rN

(
1− N

k

)
(N − a)

where:
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• r > 0 is the reproduction rate,

• k > a > 0 where a is the smallest sustainable population and k is the carrying capacity (largest
sustainable population).

Phase Portrait:

N

Ṅ

0 a kN∗ = 0 (stable)

N∗ = a (unstable)

N∗ = k (stable)

Theorem. If dy
dx = g(y) has a solution y(x), then either:

• y(x) is a constant (because y(0) = y∗ is a fixed point), or

• y(x) is monotonic (either increasing or decreasing).

Proof. We want to show that y(x) cannot change from increasing to decreasing. Suppose we have a solution
y(x) that goes from increasing to decreasing. Then there are two values, x1 and x2, such that y(x1) =
y(x2) = y.

• At x1, y is increasing, so y′(x1) ≥ 0.

• At x2, y is decreasing, so y′(x2) ≤ 0.

Since y(x) solves the differential equation dy
dx = g(y), we have:

y′(x) = g(y(x)) = g(y)

If y′(x1) ≥ 0 and y′(x2) ≤ 0, then g(y) = 0. This implies that y is a fixed point, contradicting the
assumption that y(x) changes from increasing to decreasing unless it is constant.
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4 2D Differential Equation Models

Definition (Two-Dimensional Linear System). A two-dimensional linear system is a system of the form:

ẋ = ax+ by, ẏ = cx+ dy

where a, b, c, d are parameters. These systems can always be written in matrix form:

˙⃗x = Ax⃗ where A =

(
a b
c d

)
, x⃗ =

(
x
y

)

Theorem. These systems are linear: if x⃗1 and x⃗2 are solutions, then any linear combination c1x⃗1 + c2x⃗2 is
also a solution.

x⃗∗ = 0 is always a fixed point (the origin) for any choice of A.

Definition (Stability). • x∗ is an attracting fixed point if all trajectories that start near x∗ approach
it as t → ∞, i.e., x(t) → x∗.

• x∗ is globally stable if it is attracting for trajectories starting anywhere in the plane.

• x∗ is Lyapunov stable if all trajectories that start close to x∗ remain close for all time.

• If x∗ is Lyapunov stable and attracting, it is asymptotically stable.

• x∗ is neutrally/marginally stable if it is attracting but not Lyapunov stable.

• x∗ is unstable if it is not stable (i.e., it does not satisfy any of the above criteria).

Definition (Types of Equilibrium Points in Dynamical Systems). • Stable Node: An equilibrium point
where all trajectories approach the fixed point directly over time. As t → ∞, all solutions starting
near the point move toward it.

• Unstable Node: An equilibrium point where all trajectories move away from the fixed point directly
over time. As t → ∞, all solutions starting near the point diverge.

• Saddle Point: An equilibrium point with both stable and unstable directions. Trajectories approach
the fixed point along one direction (stable) but move away in another direction (unstable).

• Stable Star: An equilibrium point where trajectories approach the fixed point directly and at the same
rate from all directions. This behavior is similar to a stable node but indicates uniform convergence
speed.

• Unstable Star: An equilibrium point where trajectories diverge from the fixed point directly and at
the same rate from all directions. This behavior is similar to an unstable node but indicates uniform
divergence speed.

• Stable Focus (Spiral): An equilibrium point where trajectories spiral inward as time increases. As
t → ∞, trajectories approach the fixed point in a spiral pattern.

• Unstable Focus (Spiral): An equilibrium point where trajectories spiral outward as time increases.
As t → ∞, trajectories move away from the fixed point in a spiral pattern.

• Center: An equilibrium point where trajectories form closed orbits around the fixed point. The
solutions neither approach nor diverge but continue to oscillate around the point indefinitely.
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5 Post Midterm Content

Definition (Lotka-Volterra Model). The Lotka-Volterra model describes the interaction between two pop-
ulations: predators (sharks) and prey (fish). The system is given by the following differential equations:

dS

dt
= S(−k + λF ),

dF

dt
= F (a− bF − cS),

where:

• a > 0: Growth rate of the fish population in the absence of sharks.

• b ≥ 0: Limitation on the fish growth rate due to overcrowding or resource depletion.

• c > 0: How detrimental the shark population is to the fish population.

• k > 0: Decline rate of the shark population in the absence of fish.

• λ > 0: How beneficial the fish population is to the shark population.

The model assumes all parameters are non-negative, and a, c, k, λ > 0.
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Definition (Hyperbolicity). Given the dynamical system ẋ = f(x), where x ∈ R2 and f : R2 → R2, an
equilibrium point x∗ of f is said to be hyperbolic if none of the eigenvalues of the Jacobian J evaluated at
x∗ have zero real part. Specifically:

• Sink: λ1, λ2 < 0

• Source: λ1, λ2 > 0

• Saddle: λ1 < 0, λ2 > 0

An equilibrium is non-hyperbolic if at least one eigenvalue has zero real part. Examples include:

• Center: λ1, λ2 = iIm(R) (purely imaginary eigenvalues)

• Marginal cases with at least one zero eigenvalue.

Theorem (Hartman-Grobman Theorem (Informal Statement)). Let x∗ be a hyperbolic equilibrium point
of the dynamical system ẋ = f(x). Then, there exists a neighborhood of x∗ on which the stability type of
the fixed point is faithfully captured by the linearization.

Intuitively, if x∗ is a hyperbolic fixed point, then locally x∗ behaves like the type of fixed point classified
by its linearization.

Definition (Conservative Systems). Given a dynamical system ẋ = f(x), where f : Rn → Rn, a function
E : Rn → R is called a conserved quantity if

d

dt
E(x(t)) = 0

and E is non-constant on every open set. If a dynamical system has a conserved quantity, it is called a
conservative system.

Definition (Special Properties of Conservative Systems). Conservative systems have several important
properties:

1. A conservative system cannot have any attracting fixed points.

2. Suppose ẋ = f(x), where f : Rn → Rn is continuously differentiable, and there exists a conserved
quantity E(x). If x∗ is an isolated fixed point of the system and x∗ is a local minimum of E(x), then
all trajectories sufficiently close to x∗ are closed (i.e., x∗ locally behaves like a center).

Definition (SIR Model with Births and Deaths). The SIR model describes the dynamics of a population
divided into three compartments:

• S(t): Susceptible individuals.

• I(t): Infected individuals.

• R(t): Recovered individuals.

Incorporating births and deaths, we make the following assumptions:

1. Birth and death rates are equal (denoted by µ), maintaining a constant population.

2. All individuals are equally capable of reproducing and dying.

3. All individuals are born susceptible to infection.
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The model is governed by the system of differential equations:

dS

dt
= µN − β

SI

N
− µS,

dI

dt
= β

SI

N
− γI − µI,

dR

dt
= γI − µR,

where:

• µ: Birth and death rate.

• β: Transmission rate of the disease.

• γ: Recovery rate.

• N : Total population size (assumed constant).

The model has two equilibria:

• Disease-Free Equilibrium (DFE): (S∗, I∗, R∗) = (N, 0, 0).

• Endemic Equilibrium: (S∗, I∗, R∗) =
(

γ+µ
β N, µ

β

(
N β

γ+µ − 1
)
, N − S∗ − I∗

)
.

Linear stability analysis can be used to study the behavior near these equilibria.

Definition (Simple Stochastic Mathematical Model). A stochastic mathematical model describes a system
in which outcomes are probabilistic rather than deterministic. For example, consider the modeling of births
in a population where each individual has a probability of giving birth during a small time interval ∆t.

1. The probability of an individual giving birth in time ∆t is λ∆t.

2. The probability of not giving birth is 1− λ∆t.

3. For N individuals, the probability of no births is:

δN = (1− λ∆t)N .

4. The probability of at least one birth among N individuals is:

σN = 1− δN = 1− (1− λ∆t)N .

Using the approximation (1− λ∆t)N ≈ 1− λN∆t for small ∆t, we find:

σN ≈ λN∆t.

Combining this, the time evolution of the probability PN (t) for the population can be expressed as:

PN (t+∆t) ≈ λ(N − 1)∆tPN−1(t) + (1− λN∆t)PN (t).

This model incorporates randomness and is valid under the assumption that higher-order terms of ∆t (e.g.,
∆t2,∆t3, . . .) are negligible.
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