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1 Preliminaries

Definition (Metric). Let X be a set. A function d : X×X → R is called a metric if it satisfies the following
properties for all x, y, z ∈ X:

(i) d(x, x) = 0;

(ii) d(x, y) > 0 if x ̸= y;

(iii) d(x, y) = d(y, x);

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition (Metric Space). The pair (X, d) is called a metric space, where d(x, y) = |x − y| defines the
metric.

Definition (Taxicab Metric). The taxicab metric on Rn is defined as:

dtaxi((x1, . . . , xn), (y1, . . . , yn)) =

n∑
i=1

|xi − yi|.

This is a metric.

Definition (Discrete Metric). Let X be a non-empty set. The discrete metric on X is defined as:

ddisc(x, y) =

{
0, if x = y,

1, otherwise.

Definition (Euclidean Metric on R). The Euclidean metric on R is defined as:

d(x, y) = |x− y|,

where x, y ∈ R.

Definition (Euclidean Metric on Rn). The Euclidean metric (or ℓ2-metric) on Rn is defined as:

dEuclidean(x⃗, y⃗) =

(
n∑

i=1

(xi − yi)
2

) 1
2

,

where x⃗, y⃗ ∈ Rn.
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Definition (Convergence of a Sequence in a Metric Space). Let (X, d) be a metric space. Let (xn)
∞
n=1 be a

sequence in X. We say that (xn)
∞
n=1 converges to x0 ∈ X (denoted xn → x0) if, for every ϵ > 0, there exists

N ∈ N such that for all n ≥ N ,
d(xn, x0) < ϵ.

Remark. The condition d(xn, x0) < ϵ is equivalent to |d(xn, x0)− 0| < ϵ.
Thus, xn → x0 if and only if

lim
n→∞

d(xn, x0) = 0.

Proposition. Let (xn)
∞
n=1 be a sequence in some discrete metric space (X, ddisc).

If (xn)
∞
n=1 converges, then the sequence is eventually constant.

Proposition. Let (x(k))∞k=1 be a sequence in Rn, where each x(k) = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ).

With the standard Euclidean metric, the sequence (x(k))∞k=1 converges to x = (x1, x2, . . . , xn) ∈ Rn if

and only if each component sequence (x
(k)
i )∞k=1 converges to xi in R for all i = 1, 2, . . . , n.

Remark. If (xn)
∞
n=1 is eventually constant, then it converges in any metric space.

Proposition (Uniqueness of Limits). Limits of sequences are unique.
Let (xn)

∞
n=1 be a sequence in a metric space (X, d). Suppose xn → x ∈ X and xn → y ∈ X. Then x = y.

2 Point Set Topology

Definition. Let (X, d) be a metric space. Let x0 ∈ X and r ∈ R>0. We define the ball centered at x0 with
radius r as

B(x0, r) = {x ∈ X | d(x, x0) < r}.

Definition. Let (X, d) be a metric space. Let U ⊆ X. We say that U is open if

∀x ∈ U,∃r > 0 such that B(x, r) ⊆ U,

where B(x, r) denotes the ball centered at x with radius r.

Definition. Let (X, d) be a metric space, and let E ⊆ X.

(i) A point x0 ∈ X is an interior point of E if ∃r > 0 such that B(x0, r) ⊆ E.

(ii) A point x0 ∈ X is an exterior point of E if ∃r > 0 such that B(x0, r) ∩ E = ∅.
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(iii) A point x0 ∈ X is a boundary point of E if it is neither an interior point nor an exterior point of E.

(iv) A point x0 ∈ X is an adherent point of E if ∀r > 0, B(x0, r) ∩ E ̸= ∅.

Let E ⊆ X be a subset of a metric space (X, d). We use the following notations:

• int(E) := {interior points of E}

• ext(E) := {exterior points of E}

• ∂E := {boundary points of E}

• E := {adherent points of E} (closure of E).

Definition. Let (X, d) be a metric space, and let E ⊆ X. We say that E is closed if it contains all of its
adherent points, i.e.,

E ⊆ E.

Remark. Let E ⊆ X, where (X, d) is a metric space. The following hold:

(i) int(E) ⊆ E, with equality if and only if E is open.

(ii) E ⊆ E, with equality if and only if E is closed.

(iii) ext(E) ∩ E = ∅, where ext(E) denotes the set of exterior points of E.

(iv) E is closed if and only if E ⊆ E.

Proposition. Let (X, d) be a metric space. Let x0 ∈ X and R > 0. Then, the ball B(x0, R) is open.

Fact. Let (X, d) be a metric space.

(i) ∅ is open and closed.

(ii) X is open and closed.

(iii) If {Ui}i∈I is a collection of open sets, then
⋃

i∈I Ui is open. (Countable?)

(iv) If {Fi}i∈I is a collection of closed sets, then
⋂

i∈I Fi is closed.

(v) If U, V are open, then U ∪ V is open.

• By induction, finite unions of open sets are open.

(vi) If E,F are closed, then their finite union E ∪ F is closed.

(vii) int(E) is always open.

(viii) E is always closed.

Definition (Subspaces (1.3)). If (X, d) is a metric space and Y ⊆ X, then (Y, d|Y ) is a metric space as well,
obtained by restricting d to points of Y .
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Definition (Relative Openness and Closedness). Let (X, d) be a metric space, Y ⊆ X, and E ⊆ Y .

• E is called relatively open in Y if E is open in (Y, d).

• E is called relatively closed in Y if E is closed in (Y, d).

Definition (Subballs).
BX(x0, r) := {x ∈ X | d(x0, x) < r}

BY (y0, r) := {y ∈ Y | d(y0, y) < r}

Since Y ⊆ X, it follows that:
BY (y0, r) = BX(x0, r) ∩ Y.

Not formal name for these balls

Example. Consider (R, dstd) and Y = [0,∞). We claim [0, 1) is relatively open in Y . Another way to see
this is to note that [0, 1) = BY (0, 1), and we have shown that all balls are open.

Proposition. Let (X, d) be a metric space, Y ⊆ X, and E ⊆ Y . Then:

(i) E is relatively open in Y if and only if there exists E′ ⊆ X open such that E = E′ ∩ Y .

(ii) E is relatively closed in Y if and only if there exists E′ ⊆ X closed such that E = E′ ∩ Y .

Definition (Cauchy Sequence). Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X is called a Cauchy

sequence if
∀ϵ > 0,∃N ∈ N, such that n,m ≥ N =⇒ d(xn, xm) < ϵ.

Proposition. Let (X, d) be a metric space, and E ⊆ X. Then E is closed if and only if X \ E is open.

Proof. (⇒) Suppose E is closed. Then E = E.
We want to show that if x0 ∈ X \ E, then x0 ∈ int(X \ E). Let x0 ∈ X \ E. Since E = E, x0 /∈ E.

This means x0 is not adjacent to E, so x0 is in the exterior of E. Therefore, there exists r0 > 0 such that
B(x0, r) ∩ E = ∅. This implies B(x0, r) ⊆ X \ E, so x0 ∈ int(X \ E).

(⇐) Assume X \ E is open. Thus, X \ E = int(X \ E).
We want to show that x0 ∈ E =⇒ x0 ∈ E. Let x0 ∈ E. Then, for all r > 0, B(x0, r) ∩ E ̸= ∅.

Equivalently, for all r > 0, B(x0, r) ̸⊆ X \E. Hence, x0 /∈ int(X \E), which implies x0 /∈ X \E. Therefore,
x0 ∈ E, and so E ⊆ E. Thus, E is closed.

Example (Open/Closed Discrete Metric Space). Let (X, ddisc) be a discrete metric space, and let E ⊆ X.
Then:

Claim: E is open.

Proof. Let x0 ∈ E. Choose r = 1. Then,

B(x0, 1) = {x ∈ X | ddisc(x, x0) < 1} = {x0} ⊆ E.

Therefore, E is open.
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=⇒ Every subset of a discrete metric space is open!

In particular, X \ E is open, which implies E is closed.

=⇒ Every subset of a discrete metric space is both open and closed.

Definition (Subsequences). Let (xn)
∞
n=m be a sequence of points in a metric space (X, d). Suppose that

n1, n2, n3, . . . is an increasing sequence of integers such that nj ≥ m for all j, satisfying:

m ≤ n1 < n2 < n3 < · · · .

Then the sequence (xnj
)∞j=1 is called a subsequence of the original sequence (xn)

∞
n=m.

Theorem. Let (xn)
∞
n=m be a sequence in a metric space (X, d) that converges to some limit x0. Then every

subsequence (xnj )
∞
j=1 of that sequence also converges to x0.

Definition (Limit Points). Suppose that (xn)
∞
n=m is a sequence of points in a metric space (X, d), and let

L ∈ X. We say that L is a limit point of (xn)
∞
n=m if and only if for every N ≥ m and ϵ > 0, there exists an

n ≥ N such that d(xn, L) ≤ ϵ.

Definition (Cauchy Sequence). Let (xn)
∞
n=m be a sequence of points in a metric space (X, d). We say

that this sequence is a Cauchy sequence if and only if for every ϵ > 0, there exists an N ≥ m such that
d(xj , xk) < ϵ for all j, k ≥ N .

Lemma (Convergent Sequences are Cauchy Sequences). Let (xn)
∞
n=m be a sequence in (X, d) which con-

verges to some limit x0. Then (xn)
∞
n=m is also a Cauchy sequence.

Definition (Complete Metric Space). A metric space (X, d) is said to be complete if and only if every
Cauchy sequence in (X, d) is convergent in (X, d).

Proposition (1.4.12). This proposition states that

(a) Let (X, d) be a metric space, and let (Y, d|Y×Y ) be a subspace of (X, d). If (Y, d|Y×Y ) is complete,
then Y must be closed in X.

(b) Conversely, suppose that (X, d) is a complete metric space, and Y is a closed subset of X. Then the
subspace (Y, d|Y×Y ) is also complete.

Definition (Open Cover). Let (X, d) be a metric space and E ⊆ X. A collection {Ui}i∈I of open sets is
called an open cover of E if

E ⊆
⋃
i∈I

Ui.
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Definition (Compact Set). Let (X, d) be a metric space, and let E ⊆ X. Then, E is said to be compact if
every open cover of E admits a finite subcover. That is, for every collection of open sets {Ui}i∈I such that

E ⊆
⋃
i∈I

Ui,

there exists a finite subset {i1, . . . , in} ⊆ I such that

E ⊆
n⋃

j=1

Uij .

Definition (Bounded Set). Let (X, d) be a metric space, and let E ⊆ X. We say that E is bounded if there
exists a point x0 ∈ X and a real number R > 0 such that

E ⊆ B(x0, R),

where B(x0, R) = {x ∈ X : d(x, x0) < R} is the open ball of radius R centered at x0.

Remark. In fact, finite sets are always compact in any metric space (X, d).

Remark (Differences between Limit Points and Adherent Points). The key differences between limit points
and adherent points are:

1. Includes the Point: A limit point does not include the point itself unless it is approached by other
points in the set. An adherent point always includes the point if it belongs to the set.

2. Neighborhood Condition: A limit point requires every neighborhood to contain another distinct
point of the set. An adherent point requires every neighborhood to contain at least one point of the
set, including itself.

3. Relation to Closure: All limit points are in the closure, but adherent points form the entire closure,
including the set itself.

Proposition. Let (X, d) be a metric space and E ⊆ X. If E is compact, then E must be closed and
bounded.

Proof. We first show that E is bounded. Suppose E is compact. Pick any x0 ∈ X. Note that

E ⊆
⋃
n∈N

B(x0, n),

where B(x0, n) denotes the open ball of radius n centered at x0. The collection of all such balls forms an
open cover of E.

By the compactness of E, there exist finitely many indices n1, . . . , nk ∈ N such that

E ⊆
k⋃

j=1

B(x0, nj).

Let N = max{n1, . . . , nk}. Then E ⊆ B(x0, N), so E is bounded.
Hence, E is bounded as desired.
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Definition (Sequential Compactness). Let (X, d) be a metric space and E ⊆ X. We say E is sequentially
compact if every sequence (xn)

∞
n=1 ⊆ E has a subsequence (xnk

)∞k=1 that converges to some x ∈ E.

Theorem (Bolzano-Weierstrass). If (xn)
∞
n=1 is a bounded sequence in (R, dstd), then there exists a subse-

quence that converges to some real number.

Theorem (Heine-Borel). Let E ⊆ (Rn, dstd). If E is closed and bounded, then E is sequentially compact.

Proposition. Let (X, d) be a metric space and E ⊆ X. If E is compact, then E must be closed and
bounded.

Proof. We first show that E is bounded. Suppose E is compact. Pick any x0 ∈ X. Note that

E ⊆
⋃
n∈N

B(x0, n),

where B(x0, n) denotes the open ball of radius n centered at x0. The collection of all such balls forms an
open cover of E.

By the compactness of E, there exist finitely many indices n1, . . . , nk ∈ N such that

E ⊆
k⋃

j=1

B(x0, nj).

Let N = max{n1, . . . , nk}. Then E ⊆ B(x0, N), so E is bounded.
Hence, E is bounded as desired. Still need to show closed.

Definition (Sequential Compactness). Let (X, d) be a metric space and E ⊆ X. We say E is sequentially
compact if every sequence (xn)

∞
n=1 ⊆ E has a subsequence (xnk

)∞k=1 that converges to some x ∈ E.

3 Continuity

Definition (Continuity in Metric Spaces). Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is continuous at x0 ∈ X if for every ϵ > 0, there exists δ > 0 such that:

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ϵ.

Proposition. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous if for every
open subset V ⊆ Y , the preimage f−1(V ) is open in X.

Proposition. Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces. Suppose f : X → Y and g : Y → Z are
functions. If f is continuous at x0 ∈ X, and g is continuous at f(x0), then the composition g ◦ f : X → Z is
continuous at x0.
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Theorem. Let (X, dX) be a metric space, and let (Y, dY ) be another metric space. Let f : X → Y be a
function. Then the following statements are equivalent:

(a) f is continuous.

(b) Whenever (x(n))∞n=1 is a sequence in X that converges to some point x0 ∈ X with respect to the metric
dX , the sequence (f(x(n)))∞n=1 converges to f(x0) with respect to the metric dY .

(c) Whenever V is an open set in Y , the set f−1(V ) := {x ∈ X : f(x) ∈ V } is an open set in X.

(d) Whenever F is a closed set in Y , the set f−1(F ) := {x ∈ X : f(x) ∈ F} is a closed set in X.

Corollary (Continuity Preserved by Composition). Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces.

(a) If f : X → Y is continuous at a point x0 ∈ X, and g : Y → Z is continuous at f(x0), then the
composition g ◦ f : X → Z, defined by (g ◦ f)(x) := g(f(x)), is continuous at x0.

(b) If f : X → Y is continuous, and g : Y → Z is continuous, then g ◦ f : X → Z is also continuous.

Corollary. Let (X, d) be a metric space, and let f : X → R and g : X → R be functions. Let c be a real
number.

(a) If x0 ∈ X and f and g are continuous at x0, then the functions

f + g : X → R, f − g : X → R, max(f, g) : X → R, min(f, g) : X → R, and cf : X → R

are also continuous at x0. If g(x) ̸= 0 for all x ∈ X, then f/g : X → R is also continuous at x0.

(b) If f and g are continuous, then the functions

f + g : X → R, f − g : X → R, max(f, g) : X → R, min(f, g) : X → R, and cf : X → R

are also continuous on X. If g(x) ̸= 0 for all x ∈ X, then f/g : X → R is also continuous on X.

Example. • We know that f(x) = x is continuous. This implies that all polynomials are continuous.

• We also know that f(x, y) = x and g(x, y) = y are continuous. Thus, all multivariate polynomials,
such as x2y + 2y3, are continuous.

Theorem (Continuous Maps Preserve Compactness). Let f : X → Y be a continuous map from one metric
space (X, dX) to another (Y, dY ). Let K ⊆ X be any compact subset of X. Then the image

f(K) := {f(x) : x ∈ K}

of K is also compact.

Proposition (Maximum Principle). Let (X, d) be a compact metric space, and let f : X → R be a
continuous function. Then f is bounded. Furthermore, if X is non-empty, then f attains its maximum at
some point xmax ∈ X and also attains its minimum at some point xmin ∈ X.
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Definition (Uniform Continuity). Let f : X → Y be a map from one metric space (X, dX) to another
(Y, dY ). We say that f is uniformly continuous if, for every ϵ > 0, there exists a δ > 0 such that:

dY (f(x), f(x
′)) < ϵ whenever x, x′ ∈ X and dX(x, x′) < δ.

Every uniformly continuous function is continuous, but not conversely. However, if the domain X is compact,
then the two notions are equivalent.

Theorem. Let (X, dX) and (Y, dY ) be metric spaces, and suppose that (X, dX) is compact. If f : X → Y
is a function, then f is continuous if and only if it is uniformly continuous.

Definition (Disconnected and Connected Sets). Let (X, d) be a metric space, and let E ⊆ X.

• E is disconnected if there exist U, V ⊆ E, non-empty, relatively open subsets (with respect to E), such
that:

E = U ∪ V and U ∩ V = ∅.

• E is connected if it is not disconnected.

Example. • Consider (R, dstd) and let E = {0, 1}. Then E is disconnected. Define U = {0} and
V = {1}. We have:

E = U ∪ V and U ∩ V = ∅.

• Let F = R \ {0}. Then F is also disconnected. Define U = (−∞, 0) and V = (0,∞), which are open
in R and thus relatively open in F . Both U and V are non-empty, and:

F = U ∪ V and U ∩ V = ∅.

Theorem. Let X be a non-empty subset of the real line R. Then the following statements are equivalent:

(a) X is connected.

(b) Whenever x, y ∈ X and x < y, the interval [x, y] is also contained in X.

(c) X is an interval (in the sense of Definition 9.1.1).

Theorem (Continuity Preserves Connectedness). Let f : X → Y be a continuous map from one metric
space (X, dX) to another (Y, dY ). Let E be any connected subset of X. Then f(E) is also connected.

Corollary (Intermediate Value Theorem). Let f : X → R be a continuous map from one metric space
(X, dX) to the real line. Let E be any connected subset of X, and let a, b be any two elements of E. Let y
be a real number between f(a) and f(b), i.e., either f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists
c ∈ E such that f(c) = y.
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