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Definition (Algebraic Number). A complex number o € C is called an algebraic number if there exists a
non-zero polynomial with integer coefficients

p(z) = apa™ + 12" a4 ay, @ €Z, ay £ 0,

such that p(a) = 0. In other words, « is a root of a polynomial with integer coefficients.
The set of all algebraic numbers is denoted by Q or A.

Theorem (Rational Zeros Theorem). Suppose cg, ¢1, ..., ¢, are integers and r is a rational number satisfying
the polynomial equation
™ F 1z e+ =0,

where n > 1, ¢, # 0, and ¢g # 0. Let r = § where ¢, d are integers having no common factors and d # 0.

Then ¢ divides ¢y and d divides c,.
In other words, the only rational candidates for solutions of the polynomial equation have the form g,
where ¢ divides ¢y and d divides c,.

Definition (Radicals are not in Q). Ezample 3: +/17 is not a rational number.
Proof: The only possible rational solutions of the equation

22 —17=0

are 1, £17. None of these numbers are solutions, and thus 4/17 is not a rational number.

Definition (Order on Q). The set Q also has an order structure < satisfying the following properties:
O1. Given a and b, either a <bor b < a.

02. If a <band b <a, then a = b.

0O3. Ifa<band b <¢, then a < c.

O4. If a <b,thena+c<b+ec.

O5. If a < b and 0 < ¢, then ac < be.

Definition (Consequences of the Field Properties). The following are consequences of the field properties
for a,b,c € R:

(i) a+c¢="b+ cimplies a = b.
(ii) a-0=0 for all a.



(iii) (—a)b = —ab for all a,b.

)
(iv) (—a)(=b) = ab for all a,b.
(v) ac =bc and ¢ # 0 imply a = b.
)

(vi) ab =0 implies either ¢ =0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the
properties of an ordered field for a, b, c € R:

(i) If a < b, then —b < —a.
(ii) If a < b and ¢ < 0, then be < ac.

(iii) If 0 < @ and 0 < b, then 0 < ab.

)

)

)

(iv) 0 < a? for all a.

(v)

(vi) If 0 < a, then 0 < a~!
)

(vii) f0<a<b,then0<b ! <a!

Note: a < b means a < b and a # b.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for
a,beR:

(i) |a| > 0 for all a € R.
(ii) |ab| = |a| - |b] for all a,b € R.
(iii) |a +b| < |a| + |b| for all a,b € R (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value

function for a,b € R:
lla] = [b]] < |a — b|

1 Completeness
Definition (Bounded Definitions). Let ) # A C R.

1. We say that A is bounded above if there exists M € R such that a < M for all a € A. In this case, M
is called an upper bound for A. If moreover M € A, then M is called the mazimum of A.

2. We say that A is bounded below if there exists m € R such that m < a for all a € A. In this case, m is
called a lower bound for A. If moreover m € A, then m is called the minimum of A.

3. We say that A is bounded if it is both bounded below and bounded above.



Definition (Supremum and Infimum). Let feqA C R.

1. Let A be bounded above. We say L is a least upper bound for A if:

(a) L is an upper bound for A.
(b) If M is an upper bound for A, then L < M.

This L is also called the supremum of A and we write L = sup A.
2. Let A be bounded below. We say £ is a greatest lower bound for A if:

(a) £ 1is a lower bound for A.

(b) If m is a lower bound for A, then m < {.

This £ is also called the infimum of A and we write £ = inf A.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let § # S C R.

1. We say S has the least upper bound property if for every nonempty subset A of S which is also bounded
above, A has a least upper bound in S.

2. We say S has the greatest lower bound property if for every nonempty subset A of S which is also
bounded below, A has a greatest lower bound in S.

Theorem (Axiom of R). The set of real numbers R has the least upper bound property. In fact, it is the
unique ordered field with the least upper bound property. As a corollary, the set of real numbers R has the
greatest lower bound property.

Property (Archimedean Property of R). For any « € R, there exists an n € N such that < n. This n
depends on .

Proof. Proof by contradiction. Suppose not, then there exists € R such that x > n for all n € N. Hence,
N C R is bounded above. By the least upper bound property of R, we have supN = L exists in R. Then
L — 1 is not an upper bound for N, so there is an m € N such that m > L — 1. But then m +1 € N and
m + 1 > L, contradicting L = supN.

O

Corollary (AP Corollary). If a > 0, b > 0, then there exists n € N such that na > b.

Corollary (AP Corollary). For a € R, there exists n € Z such that n < a <n+ 1.

Proof. If a € Z, take n = a.

For a >0 and a ¢ N, define S ={n €Z:n < a} 0. We claim that there is an m € Z such that m € S
but m+1 ¢ S. If not, m € S implies m + 1 € S, and we have 0 € S, thus by induction NU {0} C S. This
implies N is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have —a > 0. Then there is ¢ € N such that £ < —a < ¢+ 1, and so
A —-—1<a<—{. Taken=—¢—1.

O



Corollary (AP flipped). For e > 0, there exists n € N such that 0 < % < €.

Definition (Density in R). Let set A C R be called dense in R if for any z,y € R with « < y, there exists
an a € A such that z < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers Q is dense in R.

Proof. Let x,y € R with < y. Then there is an n € N such that % <y — x. There exists m € Z such that
m—1<nx <m. Then

and so

noting that 7+ € Q. O

Corollary (Irrationals Dense in Reals). The set of irrational numbers R\ Q is dense in R.

Proof. Let x,y € R with 2 < 5. Then zv/2 < yv/2. By the density of Q in R, there exists r € Q such that
V2 <r< yﬁ, which implies = < Vor < y. Note that VoreR \ Q. O

Definition (Extension to Infinity). The symbols 400, —oo. We adjoin these symbols with R so that
—o00 < a < +oo for all a € R. If fegA C R is not bounded above, we set sup A = +oco. Similarly, if fegA C R
is not bounded below, we set inf A = —co.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function f : NoR. We can
represent this function f as

F), f(2), -

or (f(n))nen, or more commonly (fy)nen, (fn)n>1, or simply (f,). We can also use curly braces, such as
{fn}, to denote the sequence.

Examples:

L. (an)nen with a, =1

2. (an)nen With a, = (=1)"
3. (an)nen with a,, = n?

4. (an)nen with a, = cos (%)



2 Limits and Convergence

Definition (Convergence of a Sequence). A sequence (a,) of real numbers converges if there exists a € R
such that for any given € > 0, there exists an n. € N such that |a, — a| < € for all n > n..
In this case, a is called the limit of the sequence, and we write
a= lim a,
n—oo

or a, — a as n — oco. We say (a,) converges to a. If no such limit a exists, i.e., if the sequence does not
converge, then we say the sequence diverges.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (a,) converges and limy,,o0 @, = @ and limnooo a, = b. We want to show a = b.

Let € > 0. There exist n1,ny € N such that |a, —a| < § for all n > n; and |a, — b < § for all n > ns.
Then for n > max(ni, nz), we have |a, —a| < § and |a, — b\ <3

Therefore, with such n, we have

€ €
|a—b|§|a—an|+|an—b|<§+§:

Since € > 0 is arbitrary, we conclude a = b. O

Example (Limit Examples). Example 1 Show that (a,) with a, =  converges to zero.
Proof. Let ¢ > 0, we need to find n. € N such that |a,, —0| = a,, < € for all n > n.. By the Archimedean
property of R, there exists n. € N such that n. > % Then for n > n., we have

< < €.

S|

1
nE
O
Example 2 Show that (a,) with a,, = (—1)" diverges.
Proof. By contradiction. Suppose a, — a € R. Then |a,, —a| < 5 L for all n > m for some m € N. For
even n > m, we have |1 —a| < 3, and for odd n > m, we have | — 1 — a| < 1. Then

2=14a+1—-a<|l14a|+]1-0qa| <1,

which is a contradiction. O

Example 3 Show that lim,, o 224 = 2.

Proof. Let € > 0. It is enough to show there exists n. € N such that for all n > n., we have

3n+1 3 <
- = €
S5n—2 5 ’
ie.,
11 <
€
5(5n —2)
Note that
! <5 2 &= n> 2 + 1
ke n— n> -1
5e 5  25¢
So choose n. € N satisfying
S 2 n 11
T
Then for all n > n., we have
S 2 n 11
5  25¢’



which implies
- 11 11
€ = .
5(5n—2)  5(bn —2)

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (a,,) be a convergent sequence converging to a € R. Then there exists N € N such that |a, —a| < 1
for all n > N. Thus |a,| < |an, —al + |a] < 1+ |a| for all n > N.
Let M = max{|a1|,...,|an—1]|,1 + |a|}, then for all n € N, |a,| < M. O O

Theorem (Limit Properties). Let (ay,), (b,) be two convergent sequences with limits a,b € R. Then:
1. For k € R, we have lim,, ., ka, = ka.
2. lim, o0 (an +b,) = a+0.
3. lim,, o0 anb, = ab.

4. If a, # 0 for all n € N and a # 0, then lim,, i =

Q=

5. If a, # 0 for all n € N and a # 0, then lim,, o, 2 =

ISEIS

Proof.

1. Let € > 0. Then there exists n. € N such that |a, —a| < -, which implies |ka,, — ka| < e.

2. Let € > 0. Then there exist n;,ns € N such that |a, —a| < § and |b, — b < §. Then for n > n. =
max(ny, ng), we have |(a, + b,) — (a + b)| < e.

3. Let € > 0. We want to find n. € N such that |a,b, — ab| < e. Let M be such that |a,| < M for all n.

Let nq,ne be such that |a, — a| < m for all n > ny and [b, — b| < 5%7. Then

€ €

nbn —abl <lay||b, — b bllan, —al| <M+ - — +|b| - —————= < e

4. Claim: inf{|a,|: n € N} =m > 0. Indeed, there is ny such that for all n > nq, one has |a, — a| < %,
which implies |a,| > |a| — |an, — a| > % So m = inf, |a,| > inf{|a1],...,|an,|, %} > 0.

Now choose n. € N such that |a, — a| < €|la|m. Then

1 1

an a

_lan —al

= < €.
|an||al

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (s,), we write lim s,, = +o00 provided that for
each M > 0, there is a number N such that n > N implies s,, > M.

In this case, we say the sequence diverges to +oo.

Similarly, we write lim s,, = —oo provided that for each M < 0, there is a number N such that n > N
implies s, < M.



Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which
will depend on M) such that n > N implies y/n+7 > M.

To see how big N must be, we “solve” for n in the inequality /n+7 > M. This inequality holds provided
Vn>M—Torn>(M-—7)? Thus, we will take N = (M — 7)2.

Formal Proof.

Let M > 0 and let N = (M — 7). Then n > N implies n > (M — 7)2, hence v/n > M — 7, hence
Vn+ 7> M. This shows lim(y/n + 7) = +o0.

Theorem. Let (s,) and (t,) be sequences such that

lim s, = 4+oc0 and lim ¢, >0
n—oo n— o0

(where lim,, ;o t,, can be finite or +00). Then

lim s,t, = +oo.
n— oo

Proof. Let M > 0 be given. Choose a real number m such that

0<m< lim t,.

n—oo

Such an m exists because lim,, ;o t,, > 0.
There are two cases to consider:

1. Case 1 lim,,_, t,, is finite.

Since lim,,_,~ t, > m, there exists an integer Ny such that for all n > N,

tn, > m.

2. Case 2: lim,,_ o t, = +00.

In this scenario, t,, > m holds for all sufficiently large n, so we can similarly find an integer N7 such
that for all n > Ny,
tn, > m.

Since lim,,_,~ s, = +00, there exists an integer No such that for all n > Na,
Sp > —.
m
Let N = max{Ny, No}. Then, for all n > N,
M
Sptn > — -m =M.
m

Since M was arbitrary, it follows that lim, . Spt, = +00. O



