Math 131A Notes

Brendan Connelly

September to December 2024

Definition (Algebraic Number). A complex number $\alpha \in \mathbb{C}$ is called an *algebraic number* if there exists a non-zero polynomial with integer coefficients

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_i \in \mathbb{Z}, \quad a_n \neq 0,$$

such that $p(\alpha) = 0$. In other words, α is a root of a polynomial with integer coefficients.

The set of all algebraic numbers is denoted by $\overline{\mathbb{Q}}$ or A.

Theorem (Rational Zeros Theorem). Suppose c_0, c_1, \ldots, c_n are integers and r is a rational number satisfying the polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0,$$

where $n \ge 1$, $c_n \ne 0$, and $c_0 \ne 0$. Let $r = \frac{c}{d}$ where c, d are integers having no common factors and $d \ne 0$. Then c divides c_0 and d divides c_n .

In other words, the only rational candidates for solutions of the polynomial equation have the form $\frac{c}{d}$, where c divides c_0 and d divides c_n .

Definition (Radicals are not in \mathbb{Q}). *Example 3:* $\sqrt{17}$ is not a rational number.

Proof: The only possible rational solutions of the equation

$$x^2 - 17 = 0$$

are $\pm 1, \pm 17$. None of these numbers are solutions, and thus $\sqrt{17}$ is not a rational number.

Definition (Order on \mathbb{Q}). The set \mathbb{Q} also has an order structure \leq satisfying the following properties:

- O1. Given a and b, either $a \leq b$ or $b \leq a$.
- O2. If $a \leq b$ and $b \leq a$, then a = b.
- O3. If $a \leq b$ and $b \leq c$, then $a \leq c$.
- O4. If $a \leq b$, then $a + c \leq b + c$.
- O5. If $a \leq b$ and $0 \leq c$, then $ac \leq bc$.

Definition (Consequences of the Field Properties). The following are consequences of the field properties for $a, b, c \in \mathbb{R}$:

- (i) a + c = b + c implies a = b.
- (ii) $a \cdot 0 = 0$ for all a.

- (iii) (-a)b = -ab for all a, b.
- (iv) (-a)(-b) = ab for all a, b.
- (v) ac = bc and $c \neq 0$ imply a = b.
- (vi) ab = 0 implies either a = 0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the properties of an ordered field for $a, b, c \in \mathbb{R}$:

- (i) If $a \leq b$, then $-b \leq -a$.
- (ii) If $a \leq b$ and $c \leq 0$, then $bc \leq ac$.
- (iii) If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- (iv) $0 \le a^2$ for all a.
- (v) 0 < 1.
- (vi) If 0 < a, then $0 < a^{-1}$.
- (vii) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Note: a < b means $a \leq b$ and $a \neq b$.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for $a, b \in \mathbb{R}$:

- (i) $|a| \ge 0$ for all $a \in \mathbb{R}$.
- (ii) $|ab| = |a| \cdot |b|$ for all $a, b \in \mathbb{R}$.
- (iii) $|a+b| \le |a|+|b|$ for all $a, b \in \mathbb{R}$ (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value function for $a, b \in \mathbb{R}$:

$$||a| - |b|| \le |a - b|$$

1 Completeness

Definition (Bounded Definitions). Let $\emptyset \neq A \subseteq \mathbb{R}$.

- 1. We say that A is bounded above if there exists $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in A$. In this case, M is called an *upper bound* for A. If moreover $M \in A$, then M is called the *maximum* of A.
- 2. We say that A is bounded below if there exists $m \in \mathbb{R}$ such that $m \leq a$ for all $a \in A$. In this case, m is called a *lower bound* for A. If moreover $m \in A$, then m is called the *minimum* of A.
- 3. We say that A is *bounded* if it is both bounded below and bounded above.

Definition (Supremum and Infimum). Let $\emptyset eqA \subseteq \mathbb{R}$.

- 1. Let A be bounded above. We say L is a *least upper bound* for A if:
 - (a) L is an upper bound for A.
 - (b) If M is an upper bound for A, then $L \leq M$.

This L is also called the *supremum* of A and we write $L = \sup A$.

- 2. Let A be bounded below. We say ℓ is a greatest lower bound for A if:
 - (a) ℓ is a lower bound for A.
 - (b) If m is a lower bound for A, then $m \leq \ell$.

This ℓ is also called the *infimum* of A and we write $\ell = \inf A$.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let $\emptyset \neq S \subseteq \mathbb{R}$.

- 1. We say S has the *least upper bound property* if for every nonempty subset A of S which is also bounded above, A has a least upper bound in S.
- 2. We say S has the greatest lower bound property if for every nonempty subset A of S which is also bounded below, A has a greatest lower bound in S.

Theorem (Axiom of \mathbb{R}). The set of real numbers \mathbb{R} has the least upper bound property. In fact, it is the unique ordered field with the least upper bound property. As a corollary, the set of real numbers \mathbb{R} has the greatest lower bound property.

Property (Archimedean Property of \mathbb{R}). For any $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that x < n. This n depends on x.

Proof. Proof by contradiction. Suppose not, then there exists $x \in \mathbb{R}$ such that $x \ge n$ for all $n \in \mathbb{N}$. Hence, $\mathbb{N} \subseteq \mathbb{R}$ is bounded above. By the least upper bound property of \mathbb{R} , we have $\sup \mathbb{N} = L$ exists in \mathbb{R} . Then L-1 is not an upper bound for \mathbb{N} , so there is an $m \in \mathbb{N}$ such that m > L-1. But then $m+1 \in \mathbb{N}$ and m+1 > L, contradicting $L = \sup \mathbb{N}$.

Corollary (AP Corollary). If a > 0, b > 0, then there exists $n \in \mathbb{N}$ such that na > b.

Corollary (AP Corollary). For $a \in \mathbb{R}$, there exists $n \in \mathbb{Z}$ such that $n \leq a < n + 1$.

Proof. If $a \in \mathbb{Z}$, take n = a.

For a > 0 and $a \notin \mathbb{N}$, define $S = \{n \in \mathbb{Z} : n < a\} \ni 0$. We claim that there is an $m \in \mathbb{Z}$ such that $m \in S$ but $m + 1 \notin S$. If not, $m \in S$ implies $m + 1 \in S$, and we have $0 \in S$, thus by induction $\mathbb{N} \cup \{0\} \subseteq S$. This implies \mathbb{N} is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have -a > 0. Then there is $\ell \in \mathbb{N}$ such that $\ell < -a < \ell + 1$, and so $-\ell - 1 < a \leq -\ell$. Take $n = -\ell - 1$.

Corollary (AP flipped). For $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

Definition (Density in \mathbb{R}). Let set $A \subseteq \mathbb{R}$ be called *dense in* \mathbb{R} if for any $x, y \in \mathbb{R}$ with x < y, there exists an $a \in A$ such that x < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers \mathbb{Q} is dense in \mathbb{R} .

Proof. Let $x, y \in \mathbb{R}$ with x < y. Then there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < y - x$. There exists $m \in \mathbb{Z}$ such that $m - 1 \leq nx < m$. Then

and so

$$\frac{m-1}{n} \le x < \frac{m}{n}$$
$$< \frac{m}{n} \le x + \frac{1}{n} < y,$$

noting that $\frac{m}{n} \in \mathbb{Q}$.

Corollary (Irrationals Dense in Reals). The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

x

Proof. Let $x, y \in \mathbb{R}$ with x < y. Then $x\sqrt{2} < y\sqrt{2}$. By the density of \mathbb{Q} in \mathbb{R} , there exists $r \in \mathbb{Q}$ such that $x\sqrt{2} < r < y\sqrt{2}$, which implies $x < \sqrt{2}r < y$. Note that $\sqrt{2}r \in \mathbb{R} \setminus \mathbb{Q}$.

Definition (Extension to Infinity). The symbols $+\infty$, $-\infty$. We adjoin these symbols with \mathbb{R} so that $-\infty < a < +\infty$ for all $a \in \mathbb{R}$. If $\emptyset eq A \subseteq \mathbb{R}$ is not bounded above, we set $\sup A = +\infty$. Similarly, if $\emptyset eq A \subseteq \mathbb{R}$ is not bounded below, we set $A = -\infty$.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function $f : \mathbb{N}o\mathbb{R}$. We can represent this function f as

 $f(1), f(2), \ldots$

or $(f(n))_{n \in \mathbb{N}}$, or more commonly $(f_n)_{n \in \mathbb{N}}$, $(f_n)_{n \geq 1}$, or simply (f_n) . We can also use curly braces, such as $\{f_n\}$, to denote the sequence.

Examples:

- 1. $(a_n)_{n \in \mathbb{N}}$ with $a_n = \frac{1}{n}$
- 2. $(a_n)_{n \in \mathbb{N}}$ with $a_n = (-1)^n$
- 3. $(a_n)_{n \in \mathbb{N}}$ with $a_n = n^2$
- 4. $(a_n)_{n \in \mathbb{N}}$ with $a_n = \cos\left(\frac{n\pi}{2}\right)$

$\mathbf{2}$ Limits and Convergence

Definition (Convergence of a Sequence). A sequence (a_n) of real numbers *converges* if there exists $a \in \mathbb{R}$ such that for any given $\epsilon > 0$, there exists an $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \ge n_{\epsilon}$.

In this case, a is called the *limit* of the sequence, and we write

$$a = \lim_{n \to \infty} a_n$$

or $a_n \to a$ as $n \to \infty$. We say (a_n) converges to a. If no such limit a exists, i.e., if the sequence does not converge, then we say the sequence *diverges*.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (a_n) converges and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} a_n = b$. We want to show a = b.

Let $\epsilon > 0$. There exist $n_1, n_2 \in \mathbb{N}$ such that $|a_n - a| < \frac{\epsilon}{2}$ for all $n \ge n_1$ and $|a_n - b| < \frac{\epsilon}{2}$ for all $n \ge n_2$. Then for $n \ge \max(n_1, n_2)$, we have $|a_n - a| < \frac{\epsilon}{2}$ and $|a_n - b| < \frac{\epsilon}{2}$.

Therefore, with such n, we have

$$|a-b| \le |a-a_n| + |a_n-b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since $\epsilon > 0$ is arbitrary, we conclude a = b.

Example (Limit Examples). **Example 1** Show that (a_n) with $a_n = \frac{1}{n}$ converges to zero.

Proof. Let $\epsilon > 0$, we need to find $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - 0| = a_n < \epsilon$ for all $n \ge n_{\epsilon}$. By the Archimedean property of \mathbb{R} , there exists $n_{\epsilon} \in \mathbb{N}$ such that $n_{\epsilon} > \frac{1}{\epsilon}$. Then for $n \ge n_{\epsilon}$, we have

$$\frac{1}{n} \le \frac{1}{n_{\epsilon}} < \epsilon.$$

Example 2 Show that (a_n) with $a_n = (-1)^n$ diverges.

Proof. By contradiction. Suppose $a_n \to a \in \mathbb{R}$. Then $|a_n - a| < \frac{1}{2}$ for all $n \ge m$ for some $m \in \mathbb{N}$. For even $n \ge m$, we have $|1-a| < \frac{1}{2}$, and for odd $n \ge m$, we have $|-1-a| < \frac{1}{2}$. Then

$$2 = 1 + a + 1 - a \le |1 + a| + |1 - a| < 1,$$

which is a contradiction.

Example 3 Show that $\lim_{n\to\infty} \frac{3n+1}{5n-2} = \frac{3}{5}$. **Proof.** Let $\epsilon > 0$. It is enough to show there exists $n_{\epsilon} \in \mathbb{N}$ such that for all $n \ge n_{\epsilon}$, we have

$$\left|\frac{3n+1}{5n-2} - \frac{3}{5}\right| < \epsilon,$$

i.e.,

$$\frac{11}{5(5n-2)} < \epsilon.$$

Note that

$$\frac{11}{5\epsilon} < 5n-2 \iff n > \frac{2}{5} + \frac{11}{25\epsilon}$$

So choose $n_{\epsilon} \in \mathbb{N}$ satisfying

$$n_{\epsilon} > \frac{2}{5} + \frac{11}{25\epsilon}.$$

11

Then for all $n \geq n_{\epsilon}$, we have

 $n > \frac{2}{5} + \frac{11}{25\epsilon},$

which implies

$$\epsilon > \frac{11}{5(5n-2)} = \frac{11}{5(5n-2)}.$$

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (a_n) be a convergent sequence converging to $a \in \mathbb{R}$. Then there exists $N \in \mathbb{N}$ such that $|a_n - a| < 1$ for all $n \ge N$. Thus $|a_n| \le |a_n - a| + |a| < 1 + |a|$ for all $n \ge N$.

Let $M = \max\{|a_1|, \dots, |a_{N-1}|, 1+|a|\}$, then for all $n \in \mathbb{N}, |a_n| \leq M$. \Box

Theorem (Limit Properties). Let $(a_n), (b_n)$ be two convergent sequences with limits $a, b \in \mathbb{R}$. Then:

- 1. For $k \in \mathbb{R}$, we have $\lim_{n \to \infty} ka_n = ka$.
- 2. $\lim_{n \to \infty} (a_n + b_n) = a + b.$
- 3. $\lim_{n\to\infty} a_n b_n = ab.$
- 4. If $a_n \neq 0$ for all $n \in \mathbb{N}$ and $a \neq 0$, then $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$.
- 5. If $a_n \neq 0$ for all $n \in \mathbb{N}$ and $a \neq 0$, then $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a}$.

Proof.

- 1. Let $\epsilon > 0$. Then there exists $n_{\epsilon} \in \mathbb{N}$ such that $|a_n a| < \frac{\epsilon}{k}$, which implies $|ka_n ka| < \epsilon$.
- 2. Let $\epsilon > 0$. Then there exist $n_1, n_2 \in \mathbb{N}$ such that $|a_n a| < \frac{\epsilon}{2}$ and $|b_n b| < \frac{\epsilon}{2}$. Then for $n \ge n_{\epsilon} = \max(n_1, n_2)$, we have $|(a_n + b_n) (a + b)| < \epsilon$.
- 3. Let $\epsilon > 0$. We want to find $n_{\epsilon} \in \mathbb{N}$ such that $|a_n b_n ab| < \epsilon$. Let M be such that $|a_n| \le M$ for all n. Let n_1, n_2 be such that $|a_n - a| < \frac{\epsilon}{2(|b|+1)}$ for all $n \ge n_1$ and $|b_n - b| < \frac{\epsilon}{2M}$. Then

$$|a_n b_n - ab| \le |a_n| |b_n - b| + |b| |a_n - a| < M \cdot \frac{\epsilon}{2M} + |b| \cdot \frac{\epsilon}{2(|b| + 1)} < \epsilon$$

4. Claim: $\inf\{|a_n|: n \in \mathbb{N}\} = m > 0$. Indeed, there is n_1 such that for all $n \ge n_1$, one has $|a_n - a| < \frac{|a|}{2}$, which implies $|a_n| \ge |a| - |a_n - a| \ge \frac{|a|}{2}$. So $m = \inf_n |a_n| \ge \inf_n \{|a_1|, \dots, |a_{n_1}|, \frac{|a|}{2}\} > 0$. Now choose $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - a| < \epsilon |a|m$. Then

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| = \frac{|a_n - a|}{|a_n||a|} < \epsilon.$$

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (s_n) , we write $\lim s_n = +\infty$ provided that for each M > 0, there is a number N such that n > N implies $s_n > M$.

In this case, we say the sequence diverges to $+\infty$.

Similarly, we write $\lim s_n = -\infty$ provided that for each M < 0, there is a number N such that n > N implies $s_n < M$.

Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which will depend on M) such that n > N implies $\sqrt{n} + 7 > M$.

To see how big N must be, we "solve" for n in the inequality $\sqrt{n}+7 > M$. This inequality holds provided $\sqrt{n} > M - 7$ or $n > (M - 7)^2$. Thus, we will take $N = (M - 7)^2$.

Let M > 0 and let $N = (M - 7)^2$. Then n > N implies $n > (M - 7)^2$, hence $\sqrt{n} > M - 7$, hence $\sqrt{n} + 7 > M$. This shows $\lim(\sqrt{n} + 7) = +\infty$.

Theorem. Let (s_n) and (t_n) be sequences such that

$$\lim_{n \to \infty} s_n = +\infty \quad \text{and} \quad \lim_{n \to \infty} t_n > 0$$

(where $\lim_{n\to\infty} t_n$ can be finite or $+\infty$). Then

$$\lim_{n \to \infty} s_n t_n = +\infty.$$

Proof. Let M > 0 be given. Choose a real number m such that

$$0 < m < \lim_{n \to \infty} t_n.$$

Such an *m* exists because $\lim_{n\to\infty} t_n > 0$.

There are two cases to consider:

1. Case 1 $\lim_{n\to\infty} t_n$ is finite.

Since $\lim_{n\to\infty} t_n > m$, there exists an integer N_1 such that for all $n > N_1$,

 $t_n > m$.

2. Case 2: $\lim_{n\to\infty} t_n = +\infty$.

In this scenario, $t_n > m$ holds for all sufficiently large n, so we can similarly find an integer N_1 such that for all $n > N_1$,

$$t_n > m$$

Since $\lim_{n\to\infty} s_n = +\infty$, there exists an integer N_2 such that for all $n > N_2$,

$$s_n > \frac{M}{m}$$

Let $N = \max\{N_1, N_2\}$. Then, for all n > N,

$$s_n t_n > \frac{M}{m} \cdot m = M.$$

Since M was arbitrary, it follows that $\lim_{n\to\infty} s_n t_n = +\infty$.