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Definition (Algebraic Number). A complex number α ∈ C is called an algebraic number if there exists a
non-zero polynomial with integer coefficients

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ Z, an ̸= 0,

such that p(α) = 0. In other words, α is a root of a polynomial with integer coefficients.
The set of all algebraic numbers is denoted by Q or A.

Theorem (Rational Zeros Theorem). Suppose c0, c1, . . . , cn are integers and r is a rational number satisfying
the polynomial equation

cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 = 0,

where n ≥ 1, cn ̸= 0, and c0 ̸= 0. Let r = c
d where c, d are integers having no common factors and d ̸= 0.

Then c divides c0 and d divides cn.
In other words, the only rational candidates for solutions of the polynomial equation have the form c

d ,
where c divides c0 and d divides cn.

Definition (Radicals are not in Q). Example 3:
√
17 is not a rational number.

Proof: The only possible rational solutions of the equation

x2 − 17 = 0

are ±1,±17. None of these numbers are solutions, and thus
√
17 is not a rational number.

Definition (Order on Q). The set Q also has an order structure ≤ satisfying the following properties:

O1. Given a and b, either a ≤ b or b ≤ a.

O2. If a ≤ b and b ≤ a, then a = b.

O3. If a ≤ b and b ≤ c, then a ≤ c.

O4. If a ≤ b, then a+ c ≤ b+ c.

O5. If a ≤ b and 0 ≤ c, then ac ≤ bc.

Definition (Consequences of the Field Properties). The following are consequences of the field properties
for a, b, c ∈ R:

(i) a+ c = b+ c implies a = b.

(ii) a · 0 = 0 for all a.
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(iii) (−a)b = −ab for all a, b.

(iv) (−a)(−b) = ab for all a, b.

(v) ac = bc and c ̸= 0 imply a = b.

(vi) ab = 0 implies either a = 0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the
properties of an ordered field for a, b, c ∈ R:

(i) If a ≤ b, then −b ≤ −a.

(ii) If a ≤ b and c ≤ 0, then bc ≤ ac.

(iii) If 0 ≤ a and 0 ≤ b, then 0 ≤ ab.

(iv) 0 ≤ a2 for all a.

(v) 0 < 1.

(vi) If 0 < a, then 0 < a−1.

(vii) If 0 < a < b, then 0 < b−1 < a−1.

Note: a < b means a ≤ b and a ̸= b.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for
a, b ∈ R:

(i) |a| ≥ 0 for all a ∈ R.

(ii) |ab| = |a| · |b| for all a, b ∈ R.

(iii) |a+ b| ≤ |a|+ |b| for all a, b ∈ R (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value
function for a, b ∈ R:

||a| − |b|| ≤ |a− b|

1 Completeness

Definition (Bounded Definitions). Let ∅ ≠ A ⊆ R.

1. We say that A is bounded above if there exists M ∈ R such that a ≤ M for all a ∈ A. In this case, M
is called an upper bound for A. If moreover M ∈ A, then M is called the maximum of A.

2. We say that A is bounded below if there exists m ∈ R such that m ≤ a for all a ∈ A. In this case, m is
called a lower bound for A. If moreover m ∈ A, then m is called the minimum of A.

3. We say that A is bounded if it is both bounded below and bounded above.
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Definition (Supremum and Infimum). Let ∅eqA ⊆ R.

1. Let A be bounded above. We say L is a least upper bound for A if:

(a) L is an upper bound for A.

(b) If M is an upper bound for A, then L ≤ M .

This L is also called the supremum of A and we write L = supA.

2. Let A be bounded below. We say ℓ is a greatest lower bound for A if:

(a) ℓ is a lower bound for A.

(b) If m is a lower bound for A, then m ≤ ℓ.

This ℓ is also called the infimum of A and we write ℓ = inf A.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let ∅ ≠ S ⊆ R.

1. We say S has the least upper bound property if for every nonempty subset A of S which is also bounded
above, A has a least upper bound in S.

2. We say S has the greatest lower bound property if for every nonempty subset A of S which is also
bounded below, A has a greatest lower bound in S.

Theorem (Axiom of R). The set of real numbers R has the least upper bound property. In fact, it is the
unique ordered field with the least upper bound property. As a corollary, the set of real numbers R has the
greatest lower bound property.

Property (Archimedean Property of R). For any x ∈ R, there exists an n ∈ N such that x < n. This n
depends on x.

Proof. Proof by contradiction. Suppose not, then there exists x ∈ R such that x ≥ n for all n ∈ N. Hence,
N ⊆ R is bounded above. By the least upper bound property of R, we have supN = L exists in R. Then
L − 1 is not an upper bound for N, so there is an m ∈ N such that m > L − 1. But then m + 1 ∈ N and
m+ 1 > L, contradicting L = supN.

Corollary (AP Corollary). If a > 0, b > 0, then there exists n ∈ N such that na > b.

Corollary (AP Corollary). For a ∈ R, there exists n ∈ Z such that n ≤ a < n+ 1.

Proof. If a ∈ Z, take n = a.
For a > 0 and a /∈ N, define S = {n ∈ Z : n < a} ∋ 0. We claim that there is an m ∈ Z such that m ∈ S

but m+ 1 /∈ S. If not, m ∈ S implies m+ 1 ∈ S, and we have 0 ∈ S, thus by induction N ∪ {0} ⊆ S. This
implies N is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have −a > 0. Then there is ℓ ∈ N such that ℓ < −a < ℓ + 1, and so
−ℓ− 1 < a ≤ −ℓ. Take n = −ℓ− 1.
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Corollary (AP flipped). For ϵ > 0, there exists n ∈ N such that 0 < 1
n < ϵ.

Definition (Density in R). Let set A ⊆ R be called dense in R if for any x, y ∈ R with x < y, there exists
an a ∈ A such that x < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers Q is dense in R.

Proof. Let x, y ∈ R with x < y. Then there is an n ∈ N such that 1
n < y − x. There exists m ∈ Z such that

m− 1 ≤ nx < m. Then
m− 1

n
≤ x <

m

n

and so

x <
m

n
≤ x+

1

n
< y,

noting that m
n ∈ Q.

Corollary (Irrationals Dense in Reals). The set of irrational numbers R \Q is dense in R.

Proof. Let x, y ∈ R with x < y. Then x
√
2 < y

√
2. By the density of Q in R, there exists r ∈ Q such that

x
√
2 < r < y

√
2, which implies x <

√
2r < y. Note that

√
2r ∈ R \Q.

Definition (Extension to Infinity). The symbols +∞, −∞. We adjoin these symbols with R so that
−∞ < a < +∞ for all a ∈ R. If ∅eqA ⊆ R is not bounded above, we set supA = +∞. Similarly, if ∅eqA ⊆ R
is not bounded below, we set inf A = −∞.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function f : NoR. We can
represent this function f as

f(1), f(2), . . .

or (f(n))n∈N, or more commonly (fn)n∈N, (fn)n≥1, or simply (fn). We can also use curly braces, such as
{fn}, to denote the sequence.

Examples:

1. (an)n∈N with an = 1
n

2. (an)n∈N with an = (−1)n

3. (an)n∈N with an = n2

4. (an)n∈N with an = cos
(
nπ
2

)
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2 Limits and Convergence

Definition (Convergence of a Sequence). A sequence (an) of real numbers converges if there exists a ∈ R
such that for any given ϵ > 0, there exists an nϵ ∈ N such that |an − a| < ϵ for all n ≥ nϵ.

In this case, a is called the limit of the sequence, and we write

a = lim
n→∞

an

or an → a as n → ∞. We say (an) converges to a. If no such limit a exists, i.e., if the sequence does not
converge, then we say the sequence diverges.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (an) converges and limno∞ an = a and limno∞ an = b. We want to show a = b.
Let ϵ > 0. There exist n1, n2 ∈ N such that |an − a| < ϵ

2 for all n ≥ n1 and |an − b| < ϵ
2 for all n ≥ n2.

Then for n ≥ max(n1, n2), we have |an − a| < ϵ
2 and |an − b| < ϵ

2 .
Therefore, with such n, we have

|a− b| ≤ |a− an|+ |an − b| < ϵ

2
+

ϵ

2
= ϵ.

Since ϵ > 0 is arbitrary, we conclude a = b.

Example (Limit Examples). Example 1 Show that (an) with an = 1
n converges to zero.

Proof. Let ϵ > 0, we need to find nϵ ∈ N such that |an−0| = an < ϵ for all n ≥ nϵ. By the Archimedean
property of R, there exists nϵ ∈ N such that nϵ >

1
ϵ . Then for n ≥ nϵ, we have

1

n
≤ 1

nϵ
< ϵ.

Example 2 Show that (an) with an = (−1)n diverges.
Proof. By contradiction. Suppose an → a ∈ R. Then |an − a| < 1

2 for all n ≥ m for some m ∈ N. For
even n ≥ m, we have |1− a| < 1

2 , and for odd n ≥ m, we have | − 1− a| < 1
2 . Then

2 = 1 + a+ 1− a ≤ |1 + a|+ |1− a| < 1,

which is a contradiction.
Example 3 Show that limn→∞

3n+1
5n−2 = 3

5 .
Proof. Let ϵ > 0. It is enough to show there exists nϵ ∈ N such that for all n ≥ nϵ, we have∣∣∣∣3n+ 1

5n− 2
− 3

5

∣∣∣∣ < ϵ,

i.e.,
11

5(5n− 2)
< ϵ.

Note that
11

5ϵ
< 5n− 2 ⇐⇒ n >

2

5
+

11

25ϵ
.

So choose nϵ ∈ N satisfying

nϵ >
2

5
+

11

25ϵ
.

Then for all n ≥ nϵ, we have

n >
2

5
+

11

25ϵ
,
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which implies

ϵ >
11

5(5n− 2)
=

11

5(5n− 2)
.

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (an) be a convergent sequence converging to a ∈ R. Then there exists N ∈ N such that |an−a| < 1
for all n ≥ N . Thus |an| ≤ |an − a|+ |a| < 1 + |a| for all n ≥ N .

Let M = max{|a1|, . . . , |aN−1|, 1 + |a|}, then for all n ∈ N, |an| ≤ M .

Theorem (Limit Properties). Let (an), (bn) be two convergent sequences with limits a, b ∈ R. Then:

1. For k ∈ R, we have limn→∞ kan = ka.

2. limn→∞(an + bn) = a+ b.

3. limn→∞ anbn = ab.

4. If an ̸= 0 for all n ∈ N and a ̸= 0, then limn→∞
1
an

= 1
a .

5. If an ̸= 0 for all n ∈ N and a ̸= 0, then limn→∞
bn
an

= b
a .

Proof.

1. Let ϵ > 0. Then there exists nϵ ∈ N such that |an − a| < ϵ
k , which implies |kan − ka| < ϵ.

2. Let ϵ > 0. Then there exist n1, n2 ∈ N such that |an − a| < ϵ
2 and |bn − b| < ϵ

2 . Then for n ≥ nϵ =
max(n1, n2), we have |(an + bn)− (a+ b)| < ϵ.

3. Let ϵ > 0. We want to find nϵ ∈ N such that |anbn − ab| < ϵ. Let M be such that |an| ≤ M for all n.
Let n1, n2 be such that |an − a| < ϵ

2(|b|+1) for all n ≥ n1 and |bn − b| < ϵ
2M . Then

|anbn − ab| ≤ |an||bn − b|+ |b||an − a| < M · ϵ

2M
+ |b| · ϵ

2(|b|+ 1)
< ϵ.

4. Claim: inf{|an| : n ∈ N} = m > 0. Indeed, there is n1 such that for all n ≥ n1, one has |an − a| < |a|
2 ,

which implies |an| ≥ |a| − |an − a| ≥ |a|
2 . So m = infn |an| ≥ inf{|a1|, . . . , |an1

|, |a|
2 } > 0.

Now choose nϵ ∈ N such that |an − a| < ϵ|a|m. Then∣∣∣∣ 1an − 1

a

∣∣∣∣ = |an − a|
|an||a|

< ϵ.

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (sn), we write lim sn = +∞ provided that for
each M > 0, there is a number N such that n > N implies sn > M .

In this case, we say the sequence diverges to +∞.
Similarly, we write lim sn = −∞ provided that for each M < 0, there is a number N such that n > N

implies sn < M .
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Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which
will depend on M) such that n > N implies

√
n+ 7 > M .

To see how big N must be, we “solve” for n in the inequality
√
n+7 > M . This inequality holds provided√

n > M − 7 or n > (M − 7)2. Thus, we will take N = (M − 7)2.
Formal Proof.
Let M > 0 and let N = (M − 7)2. Then n > N implies n > (M − 7)2, hence

√
n > M − 7, hence√

n+ 7 > M . This shows lim(
√
n+ 7) = +∞.

Theorem. Let (sn) and (tn) be sequences such that

lim
n→∞

sn = +∞ and lim
n→∞

tn > 0

(where limn→∞ tn can be finite or +∞). Then

lim
n→∞

sntn = +∞.

Proof. Let M > 0 be given. Choose a real number m such that

0 < m < lim
n→∞

tn.

Such an m exists because limn→∞ tn > 0.
There are two cases to consider:

1. Case 1 limn→∞ tn is finite.

Since limn→∞ tn > m, there exists an integer N1 such that for all n > N1,

tn > m.

2. Case 2: limn→∞ tn = +∞.

In this scenario, tn > m holds for all sufficiently large n, so we can similarly find an integer N1 such
that for all n > N1,

tn > m.

Since limn→∞ sn = +∞, there exists an integer N2 such that for all n > N2,

sn >
M

m
.

Let N = max{N1, N2}. Then, for all n > N ,

sntn >
M

m
·m = M.

Since M was arbitrary, it follows that limn→∞ sntn = +∞.
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