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Metric Spaces

Definition (Metric). A metric d on the set X is a function d : X ×X → R such that:

(A) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 ⇐⇒ x = y

(B) d(x, y) = d(y, x) for all x, y ∈ X

(C) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality)

Definition. A metric space is a pair (X, d), a set X equipped with a metric.

Definition ((Subspace)). If (X, d) is a metric space and Y ⊆ X, then (Y, d) is a subspace metric space.

Definition ((Open Ball)). The open ball B(x, r) centered at x with r > 0 is

B(x, r) := {y ∈ X | d(x, y) < r}

Definition ((Open Set)). A subset Y ⊆ X is open if for all y ∈ Y , there exists r > 0 such that B(y, r) ⊆ Y
Equivalently, Y is a union of open balls

Example. Every open ball is an open set

Proposition. For every metric space (X, d), X and ∅ are open

Proposition. If {Uα}α∈A is a collection of open sets Uα ⊆ X, then⋃
α

Uα

is open as well
[arbitrary union of open sets is open]

Proof. Let x ∈
⋃

α Uα. Then, ∃α ∈ A such that x ∈ Uα. Since Uα is open, ∃r > 0 such that B(x, r) ⊆ Uα ⊆⋃
α Uα

⇒
⋃

α Uα is open
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Proposition. If U1, U2, . . . , Un are open, then
⋂n

i=1 Ui is open

Proof. Choose r = min{r1, . . . , rn}

Definition (Closed Set). A subset Y ⊆ X is closed in X if X \ Y is open, where

X \ Y := {x ∈ X : x /∈ Y }

Definition (Closure). The closure Y of Y in X is

Y := {x ∈ X | ∃ sequence (yn)
∞
n=1 ⊆ Y with d(yn, x)→ 0}

Proposition (Empty Set and Whole Space are Closed). The sets ∅ and X are closed.

Proposition (Arbitrary Intersections of Closed Sets). An arbitrary intersection of closed sets is closed.

Proposition (Finite Unions of Closed Sets). A finite union of closed sets is closed.

Theorem (Convergent Sequences are Cauchy). Every convergent sequence is a Cauchy sequence.

Definition (Complete Metric Space). A metric space is complete if every Cauchy sequence converges in
the space.

Example (R is Complete). The space R with the usual metric d(x, y) = |x− y| is complete.
However, not every subspace is complete. For example, consider (0, 1) ⊂ R. The sequence(

1

n

)∞

n=1

⊂ (0, 1)

is Cauchy, but converges to 0 /∈ (0, 1).
Thus, limits may not lie in the subspace.

Definition (Upper Bound). A subset S ⊆ R is bounded above if there exists x ∈ R such that s ≤ x for
all s ∈ S.

We call x an upper bound.

Theorem (Least Upper Bound Axiom). If S is a non-empty subset of R and is bounded above, then S has
a least upper bound.

That is, there exists x = sup(S) such that:

• x is an upper bound for S

• If y is also an upper bound for S, then x ≤ y
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Proposition (Closed Subset of Complete Space is Complete). A closed subset of a complete metric space
is complete.

Proof. Suppose Y ⊆ X is a closed subset of a complete space X. Let (yn) be a Cauchy sequence in Y . Since
Y ⊆ X, (yn) is also Cauchy in X. Since X is complete, there exists x ∈ X such that yn → x.

Since Y is closed and (yn) ⊆ Y , it follows that x ∈ Y . Thus, (yn) converges in Y , and Y is complete.

Definition (Dense Subset). A subset Y ⊆ X is dense in X if Y = X

⇐⇒ Every open ball in X contains a point of Y

Theorem (Baire Category Theorem). Let {Un}∞n=1 be a sequence of open dense subsets of a complete
metric space X. Then

∞⋂
n=1

Un

is dense in X.

Definition (Product Spaces). Let (X1, d1), . . . , (Xn, dn) be metric spaces.
Let

X = X1 × · · · ×Xn = {(x1, . . . , xn) | xi ∈ Xi for all i}

Proposition (Several Reasonable Metrics on X). 1. Euclidean-type metric:

d(x, y) =
√

d1(x1, y1)2 + · · ·+ dn(xn, yn)2

2. ℓ1-type (taxicab) metric:

d(x, y) = d1(x1, y1) + · · ·+ dn(xn, yn)

3. ℓ∞-type (maximum) metric:

d(x, y) = max{d1(x1, y1), . . . , dn(xn, yn)}

Proposition. Each of the metrics defined in (1)–(3) above satisfy:

(A) A sequence {x(j) = (x
(j)
1 , . . . , x

(j)
n )}∞j=1 converges to x = (x1, . . . , xn) if and only if x

(j)
i → xi for all i.

(B) For all x, y ∈ X, we have dn(xn, yn) ≤ d(x, y).

Theorem (Characterization of Product Topology). If d is a metric on X satisfying (A), then the open sets
in (X, d) are unions of open sets of the form

U1 × U2 × · · · × Un

where each Ui is open in Xi.
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Theorem (Open Sets in Product Metric Spaces). Let d be a metric on X =
∏n

i=1(Xi, di) satisfying property
(A). Then the open sets of X are exactly the unions of sets of the form

U1 × U2 × · · · × Un

where each Ui is open in Xi.

Definition (Continuity at a Point). A map f : X → Y between metric spaces is continuous at a point
x ∈ X if whenever xn → x, it follows that f(xn)→ f(x).

We say f is continuous if it is continuous at every x ∈ X.

Proposition (Easy Properties). 1. The identity map id : X → X is continuous.

2. If f : X → Y and g : Y → Z are continuous maps, then the composition g ◦ f : X → Z is continuous.

Lemma (Epsilon-Delta Characterization of Continuity). A map f : X → Y is continuous at x ∈ X if and
only if for every ϵ > 0, there exists δ > 0 such that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ϵ

Equivalently,
f(B(x, δ)) ⊆ B(f(x), ϵ)

Theorem (TFAE for Continuity). The following are equivalent for a map f : X → Y between metric spaces:

1. f is continuous

2. For every x ∈ X and every ϵ > 0, there exists δ > 0 such that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ϵ

3. For every open set U ⊆ Y , the preimage f−1(U) ⊆ X is open

Definition (Epsilon-Delta Continuity). A function f : X → Y between metric spaces is continuous at
x ∈ X if for every ϵ > 0, there exists δ > 0 such that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ϵ

Definition (Projection Map). Let πk :
∏n

i=1 Xi → Xk denote the projection map onto the k-th coordinate.

Lemma (Continuity of Projection Maps). The projection map πk : X → Xk is continuous for all k.
In particular, if Ui ⊆ Xi is open for each i, then

U1 × · · · × Un

is open in X =
∏n

i=1 Xi.
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Proof. (⇒) If Ui is open in Xi, then

π−1
i (Ui) = X1 × · · · ×Xi−1 × Ui ×Xi+1 × · · · ×Xn

is open in X. Taking finite intersections:
n⋂

i=1

π−1
i (Ui)

is open, hence U1 × · · · × Un is open.
(⇐) Conversely, assume Uk ⊆ Xk is open. Then

π−1
k (Uk) = X1 × · · · ×Xk−1 × Uk ×Xk+1 × · · · ×Xn

is open by assumption, so πk is continuous.

Definition (Open Cover). A collection {Uα}α∈I of subsets of X covers a set S ⊆ X if⋃
α∈I

Uα ⊇ S

Definition (Compactness). A set S ⊆ X is compact if every open cover of S has a finite subcover.
That is, if {Uα}α∈I is a cover of S with each Uα open, then there exists a finite subset J ⊆ I such that⋃

α∈J

Uα

is a cover of S.

Definition (Totally Bounded). A metric space X is totally bounded if for every ϵ > 0, there exists a
finite collection of open balls of radius ϵ that cover X.

Note: X is bounded if there exists r > 0 such that d(x, y) < r for all x, y ∈ X.

Theorem (TFAE for Compactness in Metric Spaces). The following are equivalent for a metric space X:

1. X is compact

2. Every sequence in X has a convergent subsequence

3. X is totally bounded and complete

Definition (Separability). A metric space X is separable if there exists a subset S ⊆ X which is countable
and dense.

Equivalently, there exists a sequence {xn}∞n=1 ⊆ X such that {xn} = X.

Example (Rn is Separable). Qn is countable and dense in Rn, so Rn is separable.

Lemma (Subspace of Separable Space is Separable). Let (X, d) be a separable metric space. Then any
subspace Y ⊆ X is also separable.

[Proof omitted — see textbook.]
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Theorem (Totally Bounded Implies Separable). If X is totally bounded, then X is separable.

Proof. Let ϵn = 1
n . Since X is totally bounded, for each n, there exists a finite set of points xn1, xn2, . . . , xnkn

such that the collection of open balls
{B(xni,

1
n )}

kn
i=1

covers X.
Let

{xnj | n ∈ N, j = 1, . . . , kn}

This set is countable.
To show it’s dense: given any x ∈ X and ϵ > 0, choose n such that 1

n < ϵ. Then x ∈ B(xni,
1
n ) for some

xni.
Hence,

d(x, xni) <
1
n < ϵ

Definition (Basis of a Metric Space). A collection B of open sets in a metric space X is called a basis if
every open set in X is a union of sets from B.

Equivalently, for every open set U ⊆ X and every x ∈ U , there exists V ∈ B such that

x ∈ V ⊆ U

Definition (Second Countable). A metric space X is second countable if there exists a basis B which is
countable (or at most countable).

Theorem (Second Countable ⇒ Separable). If X is second countable, then X is separable. The converse
also holds.

Proof. (⇒) Assume X is separable. Then there exists a countable dense subset {xi}i∈N ⊆ X. Define

B =
{
B
(
xi,

1
n

)
: i ∈ N, n ∈ N

}
Then B is countable. We claim that B is a basis for X.

Let U ⊆ X be open and x ∈ U . Since U is open, there exists r > 0 such that B(x, r) ⊆ U . Choose n
such that 1

n < r
2 . Since {xi} is dense, there exists xi such that

x ∈ B
(
xi,

1
n

)
⊆ B(x, r) ⊆ U

So B is a basis.
(⇐) Now assume X is second countable, so let B = {U1, U2, . . . } be a countable basis. For each i, choose

xi ∈ Ui (if Ui is nonempty). Then
{xi}i∈N

is countable. To show it’s dense: let x ∈ X and B(x, r) be any open ball. Since B is a basis, there exists
some Ui ∈ B such that

x ∈ Ui ⊆ B(x, r)

So xi ∈ Ui ⊆ B(x, r)⇒ xi → x, proving density.
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Theorem (Second Countable ⇒ Every Open Cover Has a Countable Subcover). If X is second countable,
then every open cover of X has a countable subcover.

Proof. Let {Uα}α∈I be an open cover of X, and let B be a countable basis. Define

C ⊆ B

by: V ∈ C if and only if there exists α ∈ I such that V ⊆ Uα.
Then C is countable (as a subset of a countable set), and⋃

V ∈C

V = X

because {Uα} is a cover and B is a basis.
For each V ∈ C, pick some Uα(V ) ⊇ V . Then the collection {Uα(V )}V ∈C is countable and covers X:⋃

V ∈C

Uα(V ) ⊇
⋃
V ∈C

V = X

Hence, {Uα(V )}V ∈C is a countable subcover.

1 Topological Spaces

Definition (Topology). A collection T = {Uα}α∈I of subsets of a set X is a topology on X if:

1. ∅, X ∈ T

2. Any union of sets in T is in T

3. Any finite intersection of sets in T is in T

Definition (Topological Space). A topological space is a pair (X, T ) where X is a set and T is a topology
on X.

Each element of T is called an open set of (X, T ).

Example (Examples of Topologies).

• If (X, d) is a metric space, let T = {open sets in (X, d)}. Then (X, T ) is a topological space. This is
called the metric topology.

• For any set X, the collection T = {∅, X} is a topology on X. This is called the trivial topology.

• For any set X, the collection T = P(X) (all subsets of X) is a topology. This is called the discrete
topology.

• The cofinite topology on X: define U ⊆ X to be open if U = ∅ or X \U is finite. That is, U is open
iff U = ∅ or U is cofinite.

Definition (Metrizable). A topological space (X, T ) is called metrizable if there exists a metric d on X
such that the metric topology induced by (X, d) is equal to T .
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Definition (Convergent Sequence). Let (X, T ) be a topological space and let (xn)n∈N be a sequence in X.
We say the sequence converges to a point x ∈ X if for every open set U ∈ T such that x ∈ U , there exists
N ∈ N such that for all n ≥ N , xn ∈ U

In this case, we write xn → x or limxn = x, and the point x is called the limit of the sequence

Definition (Closed Set). Let (X, T ) be a topological space. A subset V ⊆ X is closed if X \ V ∈ T .

Proposition (Properties of Closed Sets). 1. ∅ and X are closed.

2. A finite union of closed sets is closed.

3. An arbitrary intersection of closed sets is closed.

Definition (Induced Topology). Let f : X → (Y, T ). The induced topology (or initial topology) f−1T
on X is defined as

f−1T := {f−1(U) : U ∈ T }

This is the coarsest topology on X that makes f continuous.

Example (Subspace Topology). Let X ⊆ Y , and consider the inclusion map i : X ↪→ Y given by x 7→ x.
Then,

i−1T = {U ∩X : U ∈ T }

This is called the subspace topology or relative topology on X.
For instance, consider [0, 1] ⊂ R. Then (0, 1

2 ) is open in [0, 1] (under the subspace topology), but not
open in R.

Definition (Neighborhoods, Interior, and Closure). Let (X, T ) be a topological space, and let S ⊆ X.

(i) A set S is a neighborhood of a point x ∈ X if there exists U ∈ T such that x ∈ U ⊆ S.

Remark. Some authors assume neighborhoods are themselves open.

(ii) A point x ∈ S is called an interior point of S if S is a neighborhood of x.

(iii) The interior of S, denoted int(S), is the set of all interior points of S.

Remark. int(S) ∈ T , i.e., it is an open set.

(iv) A point x ∈ X is an adherent point (or point of closure) of S if every neighborhood of x intersects
S.

Remark. Every point of S is adherent to S.

(v) A point x ∈ X is a limit point of S if x /∈ S and x is adherent to S.

(vi) A point x ∈ X is a boundary point of S if x is adherent to both S and X \ S. The boundary of S,
denoted ∂S, is the set of all boundary points of S.

(vii) The closure of S, denoted S, is the set of all adherent points of S.
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Remark. S is the smallest closed set containing S.

Proposition (Local Condition for Continuity). A function f : X → Y is continuous at a point x ∈ X if for
every open set V ⊆ Y containing f(x), there exists an open set U ⊆ X containing x such that

f(U) ⊆ V.

Definition (Continuous Function). Let (X, T ) and (Y, T ′) be topological spaces. A function f : X → Y is
continuous if for every open set V ∈ T ′, the preimage f−1(V ) ∈ T , i.e.,

V ∈ T ′ ⇒ f−1(V ) ∈ T

Proposition (Basic Properties of Continuous Maps). (1) The identity map id: (X, T ) → (X, T ) is con-
tinuous.

(2) If f : X → Y and g : Y → Z are continuous, then the composition g ◦ f : X → Z is continuous.

Definition (Homeomorphism). A continuous map f : X → Y is a homeomorphism if there exists a
continuous inverse g : Y → X such that g ◦ f = idX and f ◦ g = idY .

We say that X and Y are homeomorphic if there exists a homeomorphism f : X → Y .
We write X ∼= Y or X ≃ Y . This defines an equivalence relation on the class of topological spaces.

Example. The real line R is homeomorphic to any open interval (a, b), and to any ray of the form (r,∞).
For instance:

R ∼= (0, 1) ∼= (−1, 1) ∼= (0,∞)

Definition (Basis for Topological Space). A basis B for a topological space (X, T ) is a subcollection of T
such that every U ∈ T can be written as a union of elements of B.

Lemma. A collection B is a basis for a topology on X if and only if for every x ∈ X and every neighborhood
U of x, there exists V ∈ B such that x ∈ V ⊆ U .

Proof. (⇒) Suppose B is a basis. Let x ∈ X, and let U be a neighborhood of x. Then there exists an open
set U ′ ∈ T such that x ∈ U ′ ⊆ U . Since B is a basis, U ′ can be written as a union of elements of B:

U ′ =
⋃
α∈I

Vα, Vα ∈ B

So x ∈ Vα for some α ∈ I and Vα ⊆ U , as required.
(⇐) Suppose the right-hand side holds. Let U ∈ T . Then for every x ∈ U , there exists Vx ∈ B such that

x ∈ Vx ⊆ U . Thus,

U =
⋃
x∈U

Vx

is a union of basis elements, so U ∈ T .
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Theorem (Criterion for a Basis). A collection B of subsets of X is a basis for some topology on X if and
only if:

1. For every x ∈ X, there exists U ∈ B such that x ∈ U .

2. If U, V ∈ B and x ∈ U ∩ V , then there exists W ∈ B such that x ∈W ⊆ U ∩ V .

Definition (Product Topology). Let (X1, T1), . . . , (Xn, Tn) be topological spaces. The product topology
on X = X1 × · · · ×Xn is the topology generated by the basis

B = {U1 × · · · × Un |Ui ∈ Ti for all i}

Remark (Projection Maps). Recall that the projection map πi : X → Xi is defined by

πi(x1, . . . , xn) = xi

Lemma. The product topology on X is the smallest topology on X such that each projection map πi is
continuous.

Theorem (Lindelöf’s Thm). If (X, T ) is second countable, then every open cover has a countable
subcover.

Proof. (Same as before)

Theorem ((Second Countable ⇒ Separable)).

Proof. Let B be a countable basis for (X, T ), say B = {U1, U2, . . . }. Choose xi ∈ Ui for each i. Then
{xi}∞i=1 is countable. If U ∈ T is nonempty, then U =

⋃
i∈I Ui for some index set I, and there exists i ∈ I

such that Ui ⊆ U and xi ∈ Ui, so xi ∈ U . Hence, {xi}∞i=1 is dense.

Remark. Exercise 2.4.1 shows the converse is false.

Lemma (Open Map Proj.). Each πi : X → Xi is an open map, meaning it takes open sets to open sets.

Proof. Take V ⊂ X open. Then

V =
⋃
α∈I

U1α × · · · × Unα

for open Uiα ⊂ Xi. Then

πi(V ) =
⋃
α∈I

Uiα

is open since unions of open sets are open.

Lemma ((Product Map Continuity)). Let X =
∏

i Xi be a topological space. Then f : E → X is continuous

⇐⇒ πi ◦ f : E → Xi is continuous for all i.
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Definition (Quotient Topology). The quotient topology on X/ ∼ is given by T∼, where

U ∈ T∼ ⇐⇒ π−1(U) ∈ T

(Exercise: check T∼ is a topology)

Lemma ((Universal Property of Quotient Topology)). T∼ is the largest topology on X/ ∼ such that π is
continuous.

Proof. Suppose π : (X, T )→ (X/ ∼, T ′) is continuous. Let U ∈ T ′. Then π−1(U) ∈ T , so U ∈ T∼. Hence,
T ′ ⊆ T∼.

Example. • [0, 1]/ ∼, where 0 ∼ 1 This identifies the endpoints of the interval to form a circle. π : [0, 1]→
[0, 1]/ ∼, and the quotient space is homeomorphic to the circle S1.

Example. • [0, 1]2/ ∼, where
(x, 0) ∼ (x, 1), (0, y) ∼ (1, y)

This glues opposite edges of the square to form a torus.

Lemma ((Descent of Continuous Map)). Suppose f : X → Y is continuous. If f is constant on each
equivalence class, then there exists f : X/ ∼→ Y such that

f([x]) = f(x)

and f is well-defined.

Definition (Separation Axioms). A topological space (X, T ) is called:

(1) T1: if for all x ̸= y ∈ X, there exists open U ∋ y such that x /∈ U .

(2) T2 (Hausdorff): if for all x ̸= y ∈ X, there exist open U ∋ x, V ∋ y such that U ∩ V = ∅. (⇒ have
unique limits)

(3) Regular: if for any closed set E ⊂ X and x /∈ E, there exists open V ⊃ E and open U ∋ x such that
U ∩ V = ∅

(4) T3: if X is regular and T1

(5) Normal: if for each pair of disjoint closed sets E,F ⊂ X, there exist open sets U ⊃ E, V ⊃ F such
that U ∩ V = ∅

Lemma. If X is normal, then X is T1 i.e., X is T1 ⇐⇒ singleton sets are closed.

Proof. (⇒) Assume {x} is closed for each x ∈ X. Let y ̸= x. Then {x} ⊂ X is closed, and since y /∈ {x},
there exists open U ∋ y with x /∈ U . ⇒ T1.

(⇐) Assume T1. Let x ∈ X, and show {x} is closed. Let y ̸= x. By T1, there exists open U with x ∈ U ,
y /∈ U . So y ∈ X \ {x} open ⇒ {x} is closed.

Remark. (i) T4 ⇒ T3 ⇒ T2 ⇒ T1

(ii) T2 (Hausdorff) ⇒ limits of convergent sequences are unique. (Exercise: prove this)
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Recall: xn → x if for all open U ∋ x, there exists N ∈ N such that n ≥ N ⇒ xn ∈ U

(iii) The cofinite topology on an infinite set X is an example of a T1 space which is not T2

Example. The cofinite topology is T1 but not T2. Indeed, suppose U, V are open with x ∈ U , y ∈ V , and
U ∩ V = ∅. Then X = X \ (U ∩ V ) = (X \U)∪ (X \ V ), which is a union of two finite sets — contradiction
since X is infinite. Hence, cannot separate x, y with disjoint neighborhoods.

Theorem ((Every Metric Space is T4)). Every metric space is normal, hence T4. In particular, it satisfies
T1.

Lemma. A topological space X is normal if and only if: For every closed set E ⊂ X and every open set
W ⊃ E, there exists an open set U such that

E ⊂ U ⊂ U ⊂W.

Theorem ((Urysohn’s Lemma)). Suppose X is normal and E,F ⊂ X are disjoint, closed subsets. Then
there exists a continuous function f : X → [0, 1] such that

f |E = 0 and f |F = 1.

Theorem ((Tietze Extension Theorem)). Let X be a normal topological space, and let Y ⊂ X be closed.
Suppose f : Y → R is bounded and continuous. Then there exists a continuous extension h : X → R such
that

h|Y = f.

Definition. A topological space X is compact if every open cover of X has a finite subcover.

Definition. A subset S ⊂ X is compact if S is compact with respect to the subspace topology; that is, for
every open cover of S by open sets in X, there exists a finite subcover.

Proposition ((Properties of Compactness)). Let X be a topological space.

1. A finite union of compact subsets of X is compact.

2. If X is compact and Y ⊂ X is closed, then Y is compact.

3. If X is Hausdorff and Y ⊂ X is compact, then Y is closed.

4. If X is compact and Hausdorff, then X is T4.

5. If f : X → Y is continuous and X is compact, then f(X) is compact.
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Theorem ((Fundamental Theorem of Point-Set Topology)). Let f : X → Y be continuous, where X is
compact and Y is Hausdorff. If f is injective, then f : X → f(X) is a homeomorphism.

Remark. This is very useful, since you don’t need to show the inverse is continuous or compute it
at all.

Corollary (Quotient Map from Compact to Hausdorff). Let f : X → Y be continuous and surjective.
Suppose X is compact and Y is Hausdorff.

Define an equivalence relation ∼ on X by

x1 ∼ x2 ⇐⇒ f(x1) = f(x2).

Then the induced map
f : X/∼ → Y

is a homeomorphism.

Definition (Locally Compact). A topological space X is locally compact if for every x ∈ X, there exists
an open set W ∋ x such that W is compact.

Example. If X is compact, then X is locally compact.
(Just take W = X)

Example. The space Rn is locally compact but not compact.

Proposition (Closed Subsets of Compact Hausdorff Spaces are Locally Compact). Let Y be a compact
Hausdorff space, and let x ∈ Y . Then the subspace X = Y \ {x} is locally compact.

Definition (One-Point Compactification). Let (X, T ) be a locally compact Hausdorff space. A one-point
compactification of X is a compact Hausdorff space (Y,S) such that:

1. Y = X ∪ {∞} for some point ∞ /∈ X

2. T = {U ∩X : U ∈ S}, i.e., T is the subspace topology inherited from Y

Theorem (Existence and Uniqueness of One-Point Compactification). Every locally compact Hausdorff
space X admits a one-point compactification. Moreover, this compactification is unique up to homeomor-
phism.

Connectedness

Definition (Disjoint Union of Topological Spaces). Let (X1, T1) and (X2, T2) be topological spaces. The
disjoint union of X1 and X2 is the space

X = X1 ⊔X2

with topology
T = {U ⊆ X : U ∩Xi ∈ Ti for i = 1, 2} .
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This is also known as the external direct sum of topological spaces.
Example: [0, 1) ⊔ [0, 1] is two copies of the interval.

Proposition. The topology T defined above is the largest topology on X1 ⊔X2 for which the inclusion
maps

i1 : X1 ↪→ X, i2 : X2 ↪→ X

are continuous.

Definition (Disconnected Space). A topological space X is disconnected (or not connected) if there
exist nonempty disjoint open sets X1, X2 ∈ T such that

X = X1 ∪X2 and X1 ∩X2 = ∅.

Equivalently, X is disconnected if it can be written as the disjoint union of two nonempty open sets.

Definition (Connected Subspace). A topological space X is connected if it is not disconnected.
A subspace Y ⊆ X is connected if it is connected with respect to the subspace topology inherited from

X, i.e., the relative topology induced by the inclusion map i : Y ↪→ X.

Proposition (Image of Connected Space is Connected). Let f : X → Y be continuous. If X is connected,
then f(X) ⊆ Y is connected.

Proof. Suppose f(X) is disconnected. Then there exist nonempty open sets Y1, Y2 ⊆ Y such that

f(X) ⊆ Y1 ∪ Y2, Y1 ∩ Y2 = ∅.

Since f is continuous, the preimages f−1(Y1), f
−1(Y2) ⊆ X are open. These preimages are disjoint, and

f−1(Y1) ∪ f−1(Y2) = X,

so X is disconnected — a contradiction.

Proposition (Connected Union with Intersections). Let {Eα}α∈I be a collection of connected subspaces of
X such that

Eα ∩ Eβ ̸= ∅ for all α, β.

Then
E =

⋃
α∈I

Eα

is connected.

Definition (Connected Component). Given x ∈ X, the connected component of x is the union of all
connected subsets of X that contain x.

Equivalently, it is the maximal connected subset of X containing x.

Remark. This definition implicitly uses the earlier proposition: the union of connected sets with pairwise
nonempty intersection is connected. Hence, the connected component of x is connected.
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Proposition (Connected Components are Disjoint or Equal). Let X1, X2 ⊆ X be connected components.
Then either

X1 = X2 or X1 ∩X2 = ∅.

Lemma (Path-Connectedness is an Equivalence Relation). The relation “there exists a path in X from x
to y” defines an equivalence relation on X.

Theorem (Path-Connected Implies Connected). Every path-connected topological space is connected.

Proof. Fix x0 ∈ X. For each x ∈ X, let γx : [0, 1] → X be a path from x0 to x. By Theorems 8.1 and 8.4,
the image γx([0, 1]) ⊆ X is connected.

Each such path contains x0, and the union

X =
⋃
x∈X

γx([0, 1])

is a union of connected subsets, all containing the common point x0. Hence, X is connected.

Corollary (Connected Components are Unions of Path Components). Let X be a topological space. Then
each connected component of X is a union of path components of X.

Definition (Path in a Topological Space). Let X be a topological space. A path in X from x0 to x1 is a
continuous map

γ : [0, 1]→ X such that γ(0) = x0 and γ(1) = x1.

Definition (Path-Connected Space). A space X is path-connected if for every x0, x1 ∈ X, there exists a
path γ : [0, 1]→ X from x0 to x1.

Theorem (Path-Connected Implies Connected). If X is path-connected, then X is connected.

Proof. Suppose X is path-connected but not connected. Then there exist nonempty disjoint open sets
X1, X2 ⊆ X such that

X = X1 ∪X2, X1 ∩X2 = ∅.

Pick x1 ∈ X1, x2 ∈ X2. Since X is path-connected, there exists a continuous path

γ : [0, 1]→ X with γ(0) = x1, γ(1) = x2.

Then γ−1(X1) and γ−1(X2) are nonempty, disjoint, open subsets of [0, 1], and

γ−1(X1) ∪ γ−1(X2) = [0, 1].

This expresses [0, 1] as a disjoint union of two nonempty open sets — contradicting the fact that [0, 1] is
connected.

Thus, X must be connected.
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Definition (Path Equivalence Relation). Let X be a topological space. Define a relation x ∼ y if there
exists a path in X from x to y.

Then ∼ is an equivalence relation:

1. Reflexivity: x ∼ x via the constant path γ(t) = x.

2. Symmetry: If γ : [0, 1]→ X is a path from x to y, then the reversed path

γ̃(t) := γ(1− t)

is a path from y to x.

3. Transitivity: If γ1 is a path from x to y and γ2 is a path from y to z, define the concatenated path
γ3 : [0, 1]→ X by

γ3(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2 ,

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

Then γ3 is continuous and a path from x to z.

We call γ3 = γ1 · γ2 the concatenation of γ1 and γ2.

Remark. To rigorously show continuity of γ3, observe:

• [0, 1
2 ]

γ1(2t)−−−−→ X and [ 12 , 1]
γ2(2t−1)−−−−−−→ X are continuous.

• Both pieces agree at t = 1
2 , so we obtain a well-defined map on the glued interval.

• By the First Topology Pasting Lemma, γ3 is continuous.

Definition (Path Component). The equivalence classes of X under the path-connectedness relation ∼ are
called the path components of X.

Proposition (Product of Connected Spaces is Connected). Let Xi be connected for all i = 1, . . . , n. Then
the product

X1 ×X2 × · · · ×Xn

is connected.

Proposition (Product of Path-Connected Spaces is Path-Connected). If each Xi is path-connected for
i = 1, . . . , n, then the product

X1 ×X2 × · · · ×Xn

is path-connected.

Proposition (Quotient of Connected Space is Connected). LetX be connected, and let∼ be any equivalence
relation on X. Then the quotient space X/ ∼ is connected.

Proposition (Quotient of Path-Connected Space is Path-Connected). Let X be path-connected, and let ∼
be any equivalence relation on X. Then the quotient space X/ ∼ is path-connected.
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Product Topology for Infinite Product Spaces

Definition (Infinite Product Space). Let A be an indexing set. For each α ∈ A, let (Xα, Tα) be a topological
space with Xα ̸= ∅.

Define the product space as

X :=
∏
α∈A

Xα =

{
x : A→

⊔
α∈A

Xα

∣∣∣∣∣x(α) ∈ Xα for all α ∈ A

}

This is the set of all functions choosing one point from each Xα.

Remark (Axiom of Choice). To guarantee that X ̸= ∅, we need the Axiom of Choice: Given a family
{Sα}α∈A of nonempty sets, there exists a function f : A→

⊔
α∈A Sα such that f(α) ∈ Sα for all α ∈ A.

Definition (Projection Map). For each α ∈ A, define the projection map

πα : X → Xα, x 7→ x(α).

Definition (Product Topology). The product topology on X =
∏

α∈A Xα is the topology generated by
the basis {

n⋂
i=1

π−1
αi

(Ui)

∣∣∣∣∣ {α1, . . . , αn} ⊂ A finite, Ui ⊆ Xαi open

}
.

Remark. If A is finite, then the infinite product topology coincides with the product topology defined
previously for finite products.

Zorn’s Lemma

Definition (Partially Ordered Set (Poset)). A partially ordered set (or poset) S is a nonempty set
equipped with a binary relation ≤ such that:

1. x ≤ x for all x ∈ S (reflexivity)

2. x ≤ y and y ≤ z ⇒ x ≤ z (transitivity)

3. x ≤ y and y ≤ x⇒ x = y (antisymmetry)

Note: Some elements may be incomparable.

Example. Let S be the set of finite groups up to isomorphism. Define H ≤ G if H is a subgroup of G.
Then S is a poset.

Example: Z2 ≤ Z4, but S3 and Z6 are not comparable.

Example. Let 2S be the power set of a set S, ordered by inclusion:

X ≤ Y ⇐⇒ X ⊆ Y

This makes 2S into a poset.

17



Definition (Totally Ordered Subset). A subset E ⊆ S of a poset (S,≤) is totally ordered if for all
x, y ∈ E, either x ≤ y or y ≤ x.

Example.

• (R,≤) is totally ordered.

• 2S and the group poset from earlier are not totally ordered.

Theorem (Zorn’s Lemma). Let S be a poset. If every totally ordered subset E ⊆ S has an upper bound in
S (i.e., there exists x ∈ S such that y ≤ x for all y ∈ E), then S has a maximal element z ∈ S; that is,

z ≤ y ⇒ z = y.

Example. Every vector space V over a field F has a basis.

Proof. Let S be the set of all linearly independent subsets of V , partially ordered by inclusion.
Step 1: Let T ⊆ S be a totally ordered subset. Define

B :=
⋃
T∈T

T.

We claim that B is linearly independent.
Proof of claim: Suppose v1, . . . , vk ∈ B. Then each vi ∈ Ti for some Ti ∈ T . Since T is totally ordered,

there exists a maximal element Tj ∈ T such that Ti ⊆ Tj for all i.
Then {v1, . . . , vk} ⊆ Tj , and since Tj ∈ S, it is linearly independent. Thus, any linear combination

k∑
i=1

aivi = 0 ⇒ ai = 0 for all i.

So B is linearly independent. Hence, B ∈ S, and B is an upper bound for T .
Step 2: By Zorn’s Lemma, S has a maximal element Z ∈ S. That is, Z is linearly independent, and for

all Y ∈ S, if Z ⊆ Y , then Z = Y .
We claim Z is a basis for V .
Proof of claim: Z ∈ S, so it is linearly independent. Suppose Z does not span V ; then there exists v ∈ V

such that v /∈ span(Z). Then Z ∪ {v} is linearly independent (since v is not in the span), contradicting the
maximality of Z.

Therefore, Z spans V , and is a basis.

Tychonoff’s Theorem

Theorem (Alexander Subbasis Theorem). Let (Y, T ) be a topological space, and let S ⊆ T be a subbasis
for the topology T .

Suppose that every open cover of Y by elements of S has a finite subcover. Then Y is compact.
In other words, if the finite subcover property holds for a subbasis of T , then it holds for all open covers

in T .

Theorem (Tychonoff’s Theorem). Any product of compact topological spaces is compact in the product
topology.
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2 Algebraic Topology

Definition (Group). A group G is a set together with two maps:

• a multiplication map m : G×G→ G, denoted (a, b) 7→ ab

• an inverse map i : G→ G, denoted a 7→ a−1

such that the following axioms hold:

1. (Associativity) For all a, b, c ∈ G, we have

(ab)c = a(bc)

2. (Identity) There exists an element e ∈ G such that for all a ∈ G,

ae = a = ea

3. (Inverse) For all a ∈ G, there exists a−1 ∈ G such that

aa−1 = e = a−1a

Remark. It follows from the axioms that the identity element e ∈ G is unique, and for each a ∈ G, the
inverse a−1 is also unique.

Definition (Abelian Group). A group G is called abelian if for all a, b ∈ G, we have

ab = ba

In this case, we often write the group operation using addition instead of multiplication.

Definition (Subgroup). A subset H ⊆ G of a group G is a subgroup if H is itself a group under the
operation inherited from G. That is:

• eG ∈ H

• a, b ∈ H ⇒ ab ∈ H

• a ∈ H ⇒ a−1 ∈ H

Example.
Z ⊂ Q ⊂ R ⊂ C

are subgroups under addition.

Definition (Group Homomorphism). If G and H are groups, a function f : G→ H is a group homomor-
phism if

f(ab) = f(a)f(b) for all a, b ∈ G

Remark. A group homomorphism f : G→ H satisfies:

f(eG) = eH , f(a−1) = f(a)−1

Definition (Group Isomorphism). A group homomorphism f : G → H is an isomorphism if f is both
one-to-one and onto.
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Homotopies of Paths

Definition (Path). Let X be a topological space. A path γ in X from a to b is a continuous map

γ : [0, 1]→ X such that γ(0) = a and γ(1) = b

Remark. There is a distinction between the map γ and its image Im(γ); γ might traverse the image at
different speeds or directions.

Definition (Homotopic Paths). Let γ0, γ1 : [0, 1]→ X be two paths from a to b. We say that γ0 and γ1 are
homotopic relative to endpoints if there exists a continuous map

F : [0, 1]× [0, 1]→ X

such that:

1. γ0(s) = F (s, 0) ∀s ∈ [0, 1]

2. γ1(s) = F (s, 1) ∀s ∈ [0, 1]

3. F (0, t) = a, F (1, t) = b ∀t ∈ [0, 1]

In this case, we say F is a homotopy from γ0 to γ1.

Proposition. Homotopy relative to endpoints is an equivalence relation on paths.

γ0 ≃ γ1 is an equivalence relation.

Proof. We check the three properties:

1. Reflexivity: Any path γ is homotopic to itself via

F (s, t) = γ(s)

which is clearly continuous.

2. Symmetry: If γ0 ≃ γ1 via F (s, t), then define

G(s, t) = F (s, 1− t)

to obtain a homotopy γ1 ≃ γ0.

3. Transitivity: If γ0 ≃ γ1 via F , and γ1 ≃ γ2 via G, then define

H(s, t) =

{
F (s, 2t), 0 ≤ t ≤ 1

2

G(s, 2t− 1), 1
2 < t ≤ 1

This gives a continuous homotopy γ0 ≃ γ2.
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Remark. If X1, X2 ⊆ X are closed, X1 ∪X2 = X, and H|X1 , H|X2 are continuous, then H is continuous
on all of X.

Definition (Path Concatenation). Let α be a path from a to b, and β a path from b to c. The concatenation
α · β : [0, 1]→ X is defined by

(α · β)(s) :=

{
α(2s), 0 ≤ s ≤ 1

2

β(2s− 1), 1
2 ≤ s ≤ 1

Lemma. If α0 ≃ α1 and β0 ≃ β1, then
α0 · β0 ≃ α1 · β1

Proof. Let F : [0, 1]× [0, 1]→ X be a homotopy from α0 to α1, and let G : [0, 1]× [0, 1]→ X be a homotopy
from β0 to β1.

Define a new homotopy H : [0, 1]× [0, 1]→ X by

H(s, t) :=

{
F (2s, t), 0 ≤ s ≤ 1

2

G(2s− 1, t), 1
2 ≤ s ≤ 1

Then H is a homotopy from α0 · β0 to α1 · β1, as required.

Lemma (Reparameterization Trick). Let φ : [0, 1] → [0, 1] be any continuous map such that φ(0) = 0 and
φ(1) = 1. Then the path φ is homotopic (rel endpoints) to the identity path s 7→ s.

Proof. Define the homotopy H : [0, 1]× [0, 1]→ [0, 1] by

H(s, t) = φ(s) + t(s− φ(s))

This is a straight-line homotopy between φ and the identity map.
We verify:

H(s, 0) = φ(s)

H(s, 1) = s

H(0, t) = φ(0) + t(0− φ(0)) = 0

H(1, t) = φ(1) + t(1− φ(1)) = 1

and H is continuous, as it is built from continuous functions.
Thus, φ ≃ id[0,1] rel endpoints.

Lemma. Let α be a path from a to b. Then

ea · α ≃ α ≃ α · eb

where ea and eb are the constant paths at a and b, respectively.

Proof. We show ea · α ≃ α. The other case is similar.
Define φ : [0, 1]→ [0, 1] by

φ(s) =

{
0, 0 ≤ s ≤ 1

2

2s− 1, 1
2 ≤ s ≤ 1

Then the concatenated path ea ·α is just α ◦φ, and by the reparameterization lemma, this is homotopic
to α.

Hence ea · α ≃ α.
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Lemma. Let α be a path from a to b. Then

α · α−1 ≃ ea and α−1 · α ≃ eb

where α−1(s) := α(1− s) is the reverse path.

Proof. We construct a homotopy H : [0, 1]× [0, 1]→ X from α · α−1 to the constant path ea, defined by:

H(s, t) =


α(2s), 0 ≤ s ≤ t

2

α(t), t
2 ≤ s ≤ 1− t

2

α(1− 2s), 1− t
2 ≤ s ≤ 1

At t = 0, this is the path α · α−1, and at t = 1, we get the constant path α(1 − s) concatenated with
α(s), which cancels to the point a.

Hence, α · α−1 ≃ ea. A symmetric argument shows α−1 · α ≃ eb.

2.1 Fundamental Group

Let X be a topological space, and let x0 ∈ X be a chosen base point. The pair (X,x0) is called a pointed
topological space.

Definition (Loop). A loop based at x0 is a continuous map

γ : [0, 1]→ X such that γ(0) = x0 = γ(1)

Definition (Fundamental Group). The fundamental group π1(X,x0) is the set of homotopy classes of
loops based at x0, where two loops are considered equivalent if they are homotopic relative to endpoints.

Theorem. The fundamental group π1(X,x0) is a group, with multiplication given by composition (concate-
nation) of loops.

Proof. Let α and β be loops based at x0. Then α · β is again a loop based at x0.
We previously showed that the operation

[α][β] := [α · β]

is well-defined on homotopy classes.
We now verify the group axioms:

1. Associativity: For any loops α, β, γ,

([α][β])[γ] = [α]([β][γ])

because path concatenation is associative up to homotopy.

2. Identity: The constant loop ex0
satisfies

[α][ex0
] = [α] = [ex0

][α]

3. Inverses: The inverse loop α−1(s) = α(1− s) satisfies

[α][α−1] = [ex0
] = [α−1][α]
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Thus, π1(X,x0) is a group.

Example. We have
π1(Rn, 0⃗) = {[⃗0]}

That is, the fundamental group of Rn at the origin is the trivial group.

Proof. Let [γ] ∈ π1(Rn, 0⃗), so γ is a loop based at 0⃗.
Define the homotopy F : [0, 1]× [0, 1]→ Rn by

F (s, t) = t · γ(s)

Then F is a homotopy from the constant loop 0⃗ to γ, so [γ] = [⃗0].

Definition (Convex Set). A set X ⊂ Rn is convex if for any x⃗, y⃗ ∈ X, the line segment

{tx⃗+ (1− t)y⃗ : t ∈ [0, 1]} ⊂ X

That is, X contains the entire line segment between any two of its points.

Example. If X ⊂ Rn is convex, then
π1(X,x0) = {[ex0 ]}

Proof. Let γ be any loop based at x0. Define

F (s, t) = (1− t)x0 + t · γ(s)

This defines a homotopy from the constant loop ex0 to γ, so

[γ] = [ex0 ]

and the fundamental group is trivial.

Theorem (Change of Basepoint). Let α be a path from x1 to x0. Then there is an isomorphism

π1(X,x1) ∼= π1(X,x0)

given by
f([γ]) = [α · γ · α−1]

Proof. (1) Well-definedness: Suppose γ ≃ γ′. Then

α · γ · α−1 ≃ α · γ′ · α−1

by concatenation and homotopy compatibility. So f([γ]) = f([γ′]).
(2) Homomorphism: Let γ1, γ2 be loops based at x1. Then:

f([γ1][γ2]) = f([γ1 · γ2])
= [α · (γ1 · γ2) · α−1]

= [α · γ1 · α−1] · [α · γ2 · α−1]

= f([γ1])f([γ2])
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(3) Isomorphism: Define the inverse

f−1 : π1(X,x0)→ π1(X,x1) by [δ] 7→ [α−1 · δ · α]

Then:
f(f−1([δ])) = f([α−1 · δ · α]) = [α · α−1 · δ · α · α−1] = [δ]

f−1(f([γ])) = f−1([α · γ · α−1]) = [α−1 · α · γ · α−1 · α] = [γ]

Thus, f is an isomorphism.

Definition. If f : X → Y is a continuous map between topological spaces, and y0 = f(x0), we write

f : (X,x0)→ (Y, y0)

Theorem. Given a continuous map f : (X,x0)→ (Y, y0), there is an induced homomorphism

f∗ : π1(X,x0)→ π1(Y, y0)

defined by
f∗([α]) := [f ◦ α]

This map sends the homotopy class of a loop α in X based at x0 to the homotopy class of the loop f ◦α
in Y based at y0.

Theorem. Let f : X → Y be a continuous map between topological spaces, and suppose x0 ∈ X is a base
point with y0 = f(x0). Then f induces a homomorphism

f∗ : π1(X,x0)→ π1(Y, y0)

defined by
[α] 7→ [f ◦ α],

where (f ◦ α)(s) = f(α(s)).

Proposition (Functorality - Identity). Given the identity map id(X,x0) : (X,x0) → (X,x0), the induced
homomorphism

(id)∗ : π1(X,x0)→ π1(X,x0)

is the identity map:
[α] 7→ [α].

Proposition (Functorality - Composition). Let f : (X,x0)→ (Y, y0) and g : (Y, y0)→ (Z, z0) be continuous
basepoint-preserving maps. Then the composition

(g ◦ f) : (X,x0)→ (Z, z0)

induces a homomorphism
(g ◦ f)∗ : π1(X,x0)→ π1(Z, z0)

given by
(g ◦ f)∗ = g∗ ◦ f∗.
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Corollary. If f : (X,x0)→ (Y, y0) is a homeomorphism, then the induced map

f∗ : π1(X,x0)→ π1(Y, y0)

is an isomorphism of groups.

Proof. Since f is a homeomorphism, it has an inverse f−1. The composition laws for induced homomorphisms
give:

(f−1 ◦ f)∗ = (f−1)∗ ◦ f∗ = idπ1(X,x0),

(f ◦ f−1)∗ = f∗ ◦ (f−1)∗ = idπ1(Y,y0).

Thus f∗ is an isomorphism of groups with inverse (f−1)∗.

Definition (Simply Connected). If X is path-connected and π1(X,x0) is trivial, then X is simply con-
nected.

Homotopy of Maps

Definition. Let f0, f1 : X → Y be continuous maps. We say that f0 is homotopic to f1, written f0 ≃ f1,
if there exists a homotopy:

F : X × [0, 1]→ Y (continuous)

such that
F (x, 0) = f0(x), F (x, 1) = f1(x).

We often write F (x, t) = ft(x).

Definition. If, in addition, there exists a subset A ⊂ X such that

f0|A = f1|A,

we say f0 ≃ f1 rel A. That is, there exists a homotopy F : X × [0, 1]→ Y such that

F (a, t) = f0(a) = f1(a) for all a ∈ A, t ∈ [0, 1].

Example. If A = {0, 1} ⊂ [0, 1], this describes homotopies rel endpoints for paths.

Theorem. If ft : X → Y is a homotopy from f0 to f1, then

(f0)∗ = φα ◦ (f1)∗,

where α(t) = ft(x0) is the track of the basepoint, and

φα : π1(Y, f1(x0))→ π1(Y, f0(x0))

is defined by
[γ] 7→ [α · γ · α−1].
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Proof. Let α(t) = ft(x0), so α is a path in Y from f0(x0) to f1(x0). Let α
t(s) = α(ts), a reparameterization.

We show that αt · (ft ◦ γ) · (αt)−1 is a homotopy from f0 ◦ γ to f1 ◦ γ, relative to endpoints (assuming
γ(0) = γ(1) = x0).

Hence, the homotopy classes of f0 ◦ γ and α · (f1 ◦ γ) · α−1 are equal in π1(Y, f0(x0)), i.e.,

(f0)∗([γ]) = φα((f1)∗([γ])).

Definition. We say a continuous map g : Y → X is a homotopy inverse of a continuous function
f : X → Y if

g ◦ f ≃ idX and f ◦ g ≃ idY .

In this situation, we say f is a homotopy equivalence, and that X and Y are homotopy equivalent
spaces.

Example. Rn is homotopy equivalent to ∗ (a one-point space).

f : ∗ → Rn, ∗ 7→ 0⃗,

g : Rn → ∗, x 7→ ∗.

1. f ◦ g ≃ idRn

2. g ◦ f = id∗

Proof. For (2), we have g ◦ f = id∗, so the identity holds strictly.
For (1), note that

f ◦ g(x) = 0⃗, for all x ∈ Rn.

Define a homotopy F : Rn × [0, 1]→ Rn by

F (x, t) = x · t.

It is clear that
F (x, 0) = f ◦ g(x), F (x, 1) = x = idRn(x),

so f ◦ g ≃ idRn .

Definition. We say a topological space X is contractible if it is homotopy equivalent to a point.

Example. • Rn is contractible.

• The closed unit ball in Rn, denoted

B
n
= {x ∈ Rn | ∥x∥ ≤ 1},

is also contractible, as is its interior.

Example. Let S1 = {z ∈ C | |z| = 1}. Then S1 is not contractible, because it is homotopy equivalent to
the punctured complex plane C \ {0}, which is not simply connected.
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2.2 Covering Spaces

Definition (Covering Space). Let X be a topological space. A covering space for X is a pair (E, π), where
E is a topological space and π : E → X is a continuous surjective map such that for every x ∈ X, there
exists an open neighborhood Ux of x such that

π−1(Ux) =
⊔
α

Vα

is a disjoint union of open sets Vα ⊂ E, each of which is mapped homeomorphically onto Ux by π, i.e.,

π|Vα
: Vα → Ux

is a homeomorphism for each α.

Definition (Evenly Covered Neighborhood). Let p : E → X be a continuous map between topological
spaces. An open subset U ⊆ X is said to be evenly covered by p if

p−1(U) =
⊔
α∈A

Vα

is a disjoint union of open subsets Vα ⊆ E, each of which is mapped homeomorphically onto U by p, i.e., the
restriction p|Vα : Vα → U is a homeomorphism for each α ∈ A.

Definition (Covering Map). A continuous surjection p : E → X is called a covering map if every point
x ∈ X has an open neighborhood U such that U is evenly covered by p. In this case, E is called a covering
space over X.

Definition (Fiber). Let p : E → X be a map. For x ∈ X, the set

p−1(x)

is called the fiber over x.

Definition (Sheets of an Evenly Covered Neighborhood). Let p : E → X be a covering map, and let U ⊆ X
be an open set that is evenly covered by p. The open subsets Vα ⊆ p−1(U) such that each restriction
p|Vα

: Vα → U is a homeomorphism are called the sheets of p−1(U).

Proposition. Let p : E → X be a covering map, and suppose U ⊆ X is an open, connected, and evenly
covered neighborhood. Then the sheets of p−1(U) are precisely the connected components of p−1(U).

Definition (Lift). Let π : E → X be a covering space and let f : Y → X be a continuous map. A continuous
map f̃ : Y → E is called a lift of f if π ◦ f̃ = f .

Theorem (Homotopy Lifting). Suppose π : E → X is a covering space and ft : Y → X is a homotopy for
t ∈ [0, 1]. If f̃0 : Y → E is a lift of f0, then there exists a unique lift f̃t : Y → E of the entire homotopy ft.

Theorem (Path Lifting). Let π : E → X be a covering space. Let γ : [0, 1] → X be a path starting
at x0 ∈ X. Then, given a point x̃0 ∈ π−1({x0}), there exists a unique lift γ̃ : [0, 1] → E of γ such that
γ̃(0) = x̃0.
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Definition. Let π : E → X be a covering space, and let x0 ∈ X and x̃0 ∈ π−1(x0). We define a function

Φ : π1(X,x0)→ π−1(x0)

by sending the homotopy class [γ] to the endpoint γ̃(1) of the unique lift γ̃ of γ starting at x̃0.

Lemma. The function Φ is well-defined.

Proof. Given a path γ, the path lifting theorem guarantees the existence and uniqueness of a lift γ̃ starting
at x̃0, so the value γ̃(1) is well-defined.

To show independence of representative: suppose γ0 ≃ γ1 rel endpoints. Then there exists a homotopy
F : [0, 1]× [0, 1]→ X from γ0 to γ1 such that

F (s, t) = γt(s), with F (0, t) = F (1, t) = x0.

By the homotopy lifting property, this homotopy lifts to F̃ starting at x̃0, which implies that

γ̃0(1) = γ̃1(1).

Therefore, Φ([γ]) is independent of the representative path, and the function is well-defined.

Fact (Facts about Covering Spaces).

• Any sufficiently nice topological space X has a simply connected covering space

X̃
π−→ X,

which is unique up to isomorphism. This space X̃ is called the universal cover of X.

• There is a correspondence between connected covering spaces of X (up to isomorphism of covering
maps) and subgroups of the fundamental group π1(X), given by:{

Connected covering spaces
of X (up to equivalence)

}
←→

{
Subgroups H ⊆ π1(X)

}
.

The universal cover corresponds to the trivial subgroup {e}, and the identity covering X → X corre-
sponds to π1(X) itself. Intermediate covers correspond to intermediate subgroups H ⊆ π1(X).

Theorem (Brouwer Fixed Point Theorem). Let Dn = {x ∈ Rn | ∥x∥2 ≤ 1} denote the closed n-dimensional
disk, with boundary ∂Dn = {x ∈ Rn | ∥x∥2 = 1} = Sn−1.

Then any continuous map f : Dn → Dn has a fixed point. That is, there exists z ∈ Dn such that

f(z) = z.

Theorem (Fundamental Theorem of Algebra). Let p : C→ C be a non-constant polynomial, i.e.,

p(z) = zn + an−1z
n−1 + · · ·+ a0.

Then p(z) has at least one zero in C.

28


