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Dual Spaces

Proposition. For any two vector spaces V and W, the set of linear functions from V to W, denoted L(V, W),
is a vector space with the following operations:

e Addition: For S,T € L(V,W), define (S + T)(v) = S(v) + T(v) for all v € V.
e Scalar Multiplication: For o € k and T € L(V, W), define (aT')(v) = a(T(v)) for all v € V.

Definition (Dual Vector Space). For any vector space V', the dual vector space V* is the set of all linear

functions from V to k, denoted:
V= L(V, k).

Definition. Given a vector space V', the elements of the dual vector space V* are known as linear functionals.

Proposition. For any basis 5 = {v1,...,v4} of a finite-dimensional vector space V, there exists an isomor-
phism
(g : LV, V) = k4

defined by the formula:
[T]s = ([T(v)lp [T(v2)ls -+ [T(va)lg),
for any T € L(V, V).

Theorem (2.20). Let V and W be finite-dimensional vector spaces over K, and let 8 = {v1,...,v,,} be a
basis for V, and v = {ws,...,w,} be a basis for W. Then there exists a linear isomorphism:

[~y : LV, W) — k™™,

Corollary. If V is a vector space of dimension m and W is a vector space of dimension n, then:

dim(L(V,W)) = mn.



Corollary. If V is a finite-dimensional vector space, then:

dim(V*) = dim(V).

Definition (Dual Basis Vector). Given a finite-dimensional vector space V' and a basis 8 = {v1,...,vq} of
V', the i-th dual basis vector is the linear functional v} : V' — k defined by the formula:

v; (V) = ai,

where ¥ = ajv1 + asvg + - - - + agug is the representation of ¥ € V' in terms of the basis 3.

Theorem (2.24). If V is a finite-dimensional vector space and 8 = {v1,...,v4} is a basis for V, then the
set {vy,v3,...,v5} is a basis for V*. Moreover, for any f € V*, we have:

f=flo)or + fv2)vg + -+ + f(va)vg-

Definition (Dual Basis). If V is a finite-dimensional vector space with basis § = {v1,...,vq}, the basis

pr=A{v1,...,vq}

is called the dual basis.

Theorem (2.25). Let V,W be finite-dimensional vector spaces over k. Let B be a basis for V and C be a
basis for W. Let T': V' — W be a linear transformation. Then, 7% : W* — V*, given by

T*(g) =goT for any g€ W™,

is linear. Moreover,
*1B* t
[T¢ = (IT)5) -

Theorem (2.26). Let V be a finite-dimensional vector space. Then, the map
U:V = (V9*

given by the formula

forv eV and f € V* is a linear isomorphism.

Remark (On Dual and Double Dual Vector Spaces).
dim(V) = dim(V*) = dim((V"*)*),

We also know that V* = L(V, k), so
(V*) = L(V*, k).

The main point is that for any finite-dimensional vector space V', there exists an isomorphism between V/
and its double dual (V*)*. This isomorphism does not depend on the choice of a basis.



Remark. First equality easily shown in hw. Second equality is easy for one inclusion

ker(T™) = (ImT)°.

Im(T*) = (ker T)°.
If W is a subspace of V' where V may actually be infinite dimensional, then

dim(W) + dim(W?) = dim(V).

1 Eigenvalues, Eigenvectors, & Diagonalizability

Definition (Eigenvector/Eigenvalue). Assume T : V — V is linear, where V is a vector space. We say
v € V is an eigenvector of T' with eigenvalue A € k if

T(v)=Av and v#0.

Definition (Diagonalizable). A linear transformation T': V' — V, where V is a finite-dimensional vector
space, is said to be diagonalizable if there exists a basis B of V such that the matrix [T]g is a diagonal
matrix.

Theorem (5.1). Let V be a finite-dimensional vector space and T : V' — V a linear transformation. Then,
T is diagonalizable if and only if there exists a basis B = {v1,...,v4} for V such that for any i € {1,2,...,d},
v; is an eigenvector of T' with some eigenvalue \; € k.

Theorem (5.2). T has A\ € k as an eigenvalue if and only if ker(T' — AI) # {0}.

Corollary. A is an eigenvalue of T if and only if

det(T — \I) = 0.

Definition (Determinant). The determinant det(A) € k is defined as given in the textbook on page 205.

Definition (Characteristic Polynomial). The characteristic polynomial of A € E™*™ is

det(T — A1) € k[A].

Definition (Determinant). The determinant of a linear endomorphism 7' : V' — V of a finite-dimensional
vector space V is defined as
det([T5),

where B is a basis for V' and [Tz is the matrix representation of T' with respect to B.



Theorem (5.3). The characteristic polynomial of T" is a polynomial of degree n, where n = dim(V'), and
the coefficient on ¢" is 1. More precisely, it is (—1)".

Corollary (Number of eigenvalues). Because any polynomial P,(\) can have at most n-roots (over any
field), we conclude:
If dim(V) =n, then T has at most n eigenvalues.

Definition (Polynomial Splits). A polynomial p(t) € k[t] splits over k if there exist ¢,aq,...,aq € k such
that

p(t) =c(t—ay) - (t — aq).

Theorem (5.6). [Diagonalizability and Splitting] If T" is diagonalizable, then the characteristic polynomial
of T splits over k.

Rmk: This is only a one-way implication. You can use the contrapositive to show that T is not
diagonalizable.

Definition (Algebraic Multiplicity). Given an eigenvalue A of T', the algebraic multiplicity of A is the largest
positive integer j such that (+ — \)/ divides the characteristic polynomial of 7T

Definition (Eigenspace). Given an eigenvalue A of T, the eigenspace for X is the span of its eigenvectors
with eigenvalue A. Denote this eigenspace by Vj.
Example: V) = span{eigenvectors of T with eigenvalue \}.

Definition (Geometric Multiplicity). Given an eigenvalue A of T, its geometric multiplicity is dim(Vy,).

Theorem (5.7). If A is an eigenvalue for T' and has algebraic multiplicity m, then
dim(Vy) < m.

Equivalently,
geo(N) < alg()).

Theorem (5.8). T is diagonalizable if and only if for every eigenvalue \; of T', the geometric multiplicity of
A; equals its algebraic multiplicity:
geo(Ai) = alg(Ai).



2 Cayley-Hamilton
Theorem (Cayley-Hamilton). If A € k"*™ and the characteristic polynomial of A is
(—1)dtd +ag 1t + -+ at + ag,
where ag_1,...,a9 € k, then
(—-1)%A% + a4 1 A 4 ar A+ al =0,

where 0 is the zero matrix.
Definition (Nilpotent Maps/Matrices). T is nilpotent if 7% = 0 for some k € N.

Proposition (Eigenvalues of Nilpotent Matrices). Let T be a nilpotent linear map (or matrix). Then, the
only eigenvalue of T is 0.

Proof. Suppose T is nilpotent, so there exists some positive integer k such that 7% = 0.
Let A be an eigenvalue of T with corresponding eigenvector v # 0, i.e.,

T(v) = Av.
Applying T* to v, we get:
THw) =TF YT (v)) = TF () = AT* ().
Repeating this process iteratively, we find:
T"(v) = AFw.
However, since T* = 0, it follows that:
T"(v) = 0 = Ao,

Because v # 0, we must have A* = 0. The only solution in the field of scalars (typically C or R) is A = 0.
Therefore, the only eigenvalue of a nilpotent matrix 7" is 0. O

Corollary (Cayley-Hamilton for Linear Transformations). Let T : V' — V be a linear transformation for V
a finite-dimensional vector space over a field k, and let

p(t) = (*l)dim(v)td +ag-1t" -+ ait + ag

be the characteristic polynomial for 7.
Then, in L(V,V),

p(T) = ()37 gy T 4o 4 0y T +al = 0.

Definition (T-invariant Subspace). A subspace W of V' is called T-invariant if T(W) C W, i.e.,

(T(w) |we W} CW.



Proposition. If vy, vy are eigenvectors for T with possibly different eigenvalues, then span{vi,vs} is T-
invariant.
More generally, if vy, ..., v are eigenvectors for T, then span{vy, ..., v} is T-invariant.

Definition (T-cyclic subspace). The T-cyclic subspace at a vector v € V' is defined as

span{v, T'(v), T?(v), ...} = span{T? (v) : j € Z>0}.

Remark (Infinite Span). Recall that if S is a possibly infinite set of vectors in a vector space W, then

span(S) = Z a;s;: a € R, and only finitely many a; # 0
jES

This allows us to pick or combine finitely many vectors from S in linear combinations.

Theorem (5.21). Let T be a linear operator on a finite-dimensional vector space V', and let W denote the
T-cyclic subspace of V' generated by a nonzero vector v € V. Let k = dim(WW). Then:

(a) {v,T(v),T*(v),...,T* (v)} is a basis for W.
(b) If apv + a1 T(v) + - - + ar_1T* = (v) + T*(v) = 0, then the characteristic polynomial of T'|y is

F(&) = (1) (ap + art + -+ + ap_yt" L+ ¢F)

Theorem (5.20). Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-
invariant subspace of V. Then the characteristic polynomial of T'|y, divides the characteristic polynomial of
T.

Theorem (Characteristic Polynomial of a Cyclic Subspace). Let T : V' — V be a linear operator on a
finite-dimensional vector space V', and let W C V be the T-cyclic subspace generated by a vector v € V. If
{v,T(v), T*(v),...,T" 1(v)} is a basis for W, then:

1. The matrix representation of 7|y with respect to this basis is

0 O 0 —ao
1 0 0 —ai
Ts = o 1 .0 —a2 ,
00 -+ 1 —ap
where T"(v) = —agv — a;T(v) — -+ — @, 1T (v).

2. The characteristic polynomial of T'|y is

fT|W(t) = (—1)n(a0 +ait+---+ an—ltn_l + tn).



Proposition (Characteristic Polynomial Decomposition). Let W C V be a T-invariant subspace of a vector
space V. Then the characteristic polynomial of T satisfies the relation

fr(t) =p(t) - q(t),

where p(t) is the characteristic polynomial of Ty, and q() is the characteristic polynomial of Ty .

Remark. To see this explicitly, take any basis By for W and extend it to a basis By = B; U Q for the entire
vector space V. Then, the matrix representation of T with respect to By is block-upper triangular:

s, = (1) ).

where A; = 0 if and only if span(Q) is T-invariant. The determinant of tIy — [T]|g, decomposes as
det(tly — [Tp,) = det(tlw — [T'|w]s,) - det(tly,w — Asz),

which corresponds to the factorization fr(t) = p(t) - q(¢).

Proposition. If V is T cyclic, then S commutes with T if and only if S = ¢g(T") for polynomial g.
Proof. Assume that V is a cyclic T-module, generated by a vector v, so that
V = span{v, Tv,T%v,...}.

Let m(x) be the minimal polynomial of T with respect to v, i.e., the monic polynomial of smallest degree
such that
m(T)v = 0.

Then every vector in V' can be expressed as a polynomial in 7" of degree less than deg m applied to v.
(=) Suppose that S commutes with T, i.e., ST =TS.
Since V is generated by v, the action of S is determined by its action on v. Let us express Sv as

Sv = p(T)v,

for some polynomial p(z).
We need to show that S = p(T). For any non-negative integer k,

STky = TFSv = T*p(T)v = p(T)T*w.

On the other hand,
ST*y = p(T)T*v.

This equality holds for all k, and since {v, Tv,T?v,...} spans V, it follows that
S =p(T).

Therefore, S is a polynomial in T'.
( <) Conversely, suppose that S = g(T') for some polynomial g(z).
Since polynomials in 7' commute with 7', we have

ST = g(T)T = Tg(T) = TS.

Thus, S commutes with 7.
Combining both directions, we conclude that S commutes with 7" if and only if S = ¢(T") for some
polynomial g. O



3 Inner Product Spaces and Adjoints

L1 Y1
Definition (Standard Inner Product (Real)). Let x = [ @ |,y

T Yn

€ R™. The standard inner

product (dot product) is defined as:

<X7y> :x1y1++xnyn eR.

Remark. For x € R", (x,x) = 23 +--- + 22 = ||x|%.

Definition (Standard Inner Product (Complex)). Let z = [ : | ,w = | : | € C". The standard inner

product of vectors is defined as:
(z, W) =Z1w1 + -+ + Zwy,.

Remark. For any w € C", (w,w) € R>¢, and it is equal to zero if and only if w = 0.

Remark. In R?, the cosine of the angle  between two vectors x = <i1> and y = <Zl> is given by:
2 2

_ (xy)
Ixlllyll

cos 6

Definition (Inner Product). An inner product on an F-vector space V is the data of a scalar (v,w) € F
for every v, w € V, such that the following properties hold:

1. Linearity in the First Variable: For all vi,v5,w € V and a;,as € F,
(01 + agvg, w) = aq (v, w) + as(va, w).

2. Conjugate Symmetry: For all v,w € V,

(v, w) = (w, v).

3. Positive Definiteness: If v € V is a nonzero vector, then
(v,v) > 0,

where the result is a positive real number (even if F' = C).

The inner product is a map (-,-) : VxV — F.

Definition (Inner Product Space). An inner product space is the data of a vector space V over F and an
inner product on V.



Corollary (Orthogonal Basis Expansion). Assume V is an inner product space (IPS), and let {vq,...,v4}
be an orthonormal basis (ONB) for V. Then, for any v € V, we have:

v = (v,v1)v1 + (v, V2)v2 + - - - + (V,Va)Vq.

Theorem (Gram-Schmidt Process). Let S = {v1,...,v,} be a set of a finite number of vectors in an inner
product space (IPS) V. Then, there exists an orthonormal set of vectors {v,41,...,v4} C V such that
{v1,.. U, Vry1,...,0q} forms an orthonormal basis (ONB) for V.

Definition (Orthogonal Complement). Given a subspace W of an inner product space V, its orthogonal
complement is defined as:
Wt ={veV|(ww) =0 foralweW}.

Theorem. If W is any subspace of a finite-dimensional inner product space (IPS) V, then:
V=waw,

where W is the orthogonal complement of W.

Proof (Sketch). Use the Gram-Schmidt process to construct an orthonormal basis {w,wa,...,w,} for W.
Then, extend this basis to an orthonormal basis for V' by adding vectors from W=. The resulting basis
{wi, ..., We, Wry1, ..., wq} satisfies the decomposition V =W @ W+, O

Theorem. Fix an inner product space V. The function P : V — V* defined by:
P(v)(w) = (w,v) for v,w €V,

is a bijection. However, P is not linear over C if V is a complex vector space.

Theorem. Let T : V — V be a linear endomorphism of a finite-dimensional inner product space (IPS) V.
Then, there exists a unique linear map 7" : V' — V such that:

(T(v),w) = (v, T*(w)) forall v,we V.

This function 7™ is linear.

Definition (Adjoint or Conjugate Transpose). The linear operator T* : V — V is called the conjugate
transpose or adjoint of T.

Theorem. If we choose a basis B = {v1,...,v4} for a finite-dimensional inner product space (IPS) V, then
the conjugate transpose of T' satisfies:
[T*]5 = ([T]s)",

where ([T]5)" = ([T]g)7 is the transpose (or conjugate transpose in the complex case) of the matrix repre-
sentation of T in the basis B.



Theorem. Let T,U : V — V be linear operators on a finite-dimensional inner product space (IPS) V.
Then, the following properties hold:

1. (U+T)"=U*+1T,

2. If a € F, then (aT)* = aT™,
3. (UoT)* =T oU*,

4 (T*)* =T,

5. I* = I, where [ is the identity operator.

Remark. These properties hold because for any composition of operators, (AB)* = B*A*, which can be
verified using the definition of the adjoint:

(AB)v,w) = (v, (AB)*w) = (v, B* A*w).

Definition (Normal Operator). A linear operator T : V' — V on a finite-dimensional inner product space
(IPS) V is called normal if:
TT* =T"T.

Theorem (Properties of Normal Operators). Let 7' be a normal operator on a finite-dimensional inner
product space V. Then:

1. |[T(v)|| = ||T*(v)]| for any v € V,

2. T — ol is normal for any a € F.
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