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Dual Spaces

Proposition. For any two vector spaces V andW , the set of linear functions from V toW , denoted L(V,W ),
is a vector space with the following operations:

• Addition: For S, T ∈ L(V,W ), define (S + T )(v) = S(v) + T (v) for all v ∈ V .

• Scalar Multiplication: For α ∈ k and T ∈ L(V,W ), define (αT )(v) = α(T (v)) for all v ∈ V .

Definition (Dual Vector Space). For any vector space V , the dual vector space V ∗ is the set of all linear
functions from V to k, denoted:

V ∗ := L(V, k).

Definition. Given a vector space V , the elements of the dual vector space V ∗ are known as linear functionals.

Proposition. For any basis β = {v1, . . . , vd} of a finite-dimensional vector space V , there exists an isomor-
phism

[−]β : L(V, V ) → kd×d

defined by the formula:
[T ]β =

(
[T (v1)]β [T (v2)]β · · · [T (vd)]β

)
,

for any T ∈ L(V, V ).

Theorem (2.20). Let V and W be finite-dimensional vector spaces over K, and let β = {v1, . . . , vm} be a
basis for V , and γ = {w1, . . . , wn} be a basis for W . Then there exists a linear isomorphism:

[−]γ,β : L(V,W ) → kn×m.

Corollary. If V is a vector space of dimension m and W is a vector space of dimension n, then:

dim(L(V,W )) = mn.
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Corollary. If V is a finite-dimensional vector space, then:

dim(V ∗) = dim(V ).

Definition (Dual Basis Vector). Given a finite-dimensional vector space V and a basis β = {v1, . . . , vd} of
V , the i-th dual basis vector is the linear functional v∗i : V → k defined by the formula:

v∗i (v⃗) = αi,

where v⃗ = α1v1 + α2v2 + · · ·+ αdvd is the representation of v⃗ ∈ V in terms of the basis β.

Theorem (2.24). If V is a finite-dimensional vector space and β = {v1, . . . , vd} is a basis for V , then the
set {v∗1 , v∗2 , . . . , v∗d} is a basis for V ∗. Moreover, for any f ∈ V ∗, we have:

f = f(v1)v
∗
1 + f(v2)v

∗
2 + · · ·+ f(vd)v

∗
d.

Definition (Dual Basis). If V is a finite-dimensional vector space with basis β = {v1, . . . , vd}, the basis

β∗ = {v∗1 , . . . , v∗d}

is called the dual basis.

Theorem (2.25). Let V,W be finite-dimensional vector spaces over k. Let B be a basis for V and C be a
basis for W . Let T : V → W be a linear transformation. Then, T ∗ : W ∗ → V ∗, given by

T ∗(g) = g ◦ T for any g ∈ W ∗,

is linear. Moreover,

[T ∗]B
∗

C∗ =
(
[T ]CB

)t
.

Theorem (2.26). Let V be a finite-dimensional vector space. Then, the map

Ψ : V → (V ∗)∗

given by the formula
Ψ(v)(f) = f(v),

for v ∈ V and f ∈ V ∗, is a linear isomorphism.

Remark (On Dual and Double Dual Vector Spaces).

dim(V ) = dim(V ∗) = dim((V ∗)∗),

We also know that V ∗ = L(V, k), so
(V ∗)∗ = L(V ∗, k).

The main point is that for any finite-dimensional vector space V , there exists an isomorphism between V
and its double dual (V ∗)∗. This isomorphism does not depend on the choice of a basis.
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Remark. First equality easily shown in hw. Second equality is easy for one inclusion

ker(T ∗) = (ImT )◦.

Im(T ∗) = (kerT )◦.

If W is a subspace of V where V may actually be infinite dimensional, then

dim(W ) + dim(W 0) = dim(V ).

1 Eigenvalues, Eigenvectors, & Diagonalizability

Definition (Eigenvector/Eigenvalue). Assume T : V → V is linear, where V is a vector space. We say
v ∈ V is an eigenvector of T with eigenvalue λ ∈ k if

T (v) = λv and v ̸= 0.

Definition (Diagonalizable). A linear transformation T : V → V , where V is a finite-dimensional vector
space, is said to be diagonalizable if there exists a basis B of V such that the matrix [T ]B is a diagonal
matrix.

Theorem (5.1). Let V be a finite-dimensional vector space and T : V → V a linear transformation. Then,
T is diagonalizable if and only if there exists a basis B = {v1, . . . , vd} for V such that for any i ∈ {1, 2, . . . , d},
vi is an eigenvector of T with some eigenvalue λi ∈ k.

Theorem (5.2). T has λ ∈ k as an eigenvalue if and only if ker(T − λI) ̸= {0}.

Corollary. λ is an eigenvalue of T if and only if

det(T − λI) = 0.

Definition (Determinant). The determinant det(A) ∈ k is defined as given in the textbook on page 205.

Definition (Characteristic Polynomial). The characteristic polynomial of A ∈ kn×n is

det(T − λI) ∈ k[λ].

Definition (Determinant). The determinant of a linear endomorphism T : V → V of a finite-dimensional
vector space V is defined as

det([T ]B),

where B is a basis for V and [T ]B is the matrix representation of T with respect to B.
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Theorem (5.3). The characteristic polynomial of T is a polynomial of degree n, where n = dim(V ), and
the coefficient on tn is 1. More precisely, it is (−1)n.

Corollary (Number of eigenvalues). Because any polynomial Pn(λ) can have at most n-roots (over any
field), we conclude:

If dim(V ) = n, then T has at most n eigenvalues.

Definition (Polynomial Splits). A polynomial p(t) ∈ k[t] splits over k if there exist c, a1, . . . , ad ∈ k such
that

p(t) = c(t− a1) · · · (t− ad).

Theorem (5.6). [Diagonalizability and Splitting] If T is diagonalizable, then the characteristic polynomial
of T splits over k.

Rmk: This is only a one-way implication. You can use the contrapositive to show that T is not
diagonalizable.

Definition (Algebraic Multiplicity). Given an eigenvalue λ of T , the algebraic multiplicity of λ is the largest
positive integer j such that (t− λ)j divides the characteristic polynomial of T .

Definition (Eigenspace). Given an eigenvalue λ of T , the eigenspace for λ is the span of its eigenvectors
with eigenvalue λ. Denote this eigenspace by Vλ.

Example: Vλ = span{eigenvectors of T with eigenvalue λ}.

Definition (Geometric Multiplicity). Given an eigenvalue λ of T , its geometric multiplicity is dim(Vλ).

Theorem (5.7). If λ is an eigenvalue for T and has algebraic multiplicity m, then

dim(Vλ) ≤ m.

Equivalently,
geo(λ) ≤ alg(λ).

Theorem (5.8). T is diagonalizable if and only if for every eigenvalue λi of T , the geometric multiplicity of
λi equals its algebraic multiplicity:

geo(λi) = alg(λi).
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2 Cayley-Hamilton

Theorem (Cayley-Hamilton). If A ∈ kn×n and the characteristic polynomial of A is

(−1)dtd + ad−1t
d−1 + · · ·+ a1t+ a0,

where ad−1, . . . , a0 ∈ k, then

(−1)dAd + ad−1A
d−1 + · · ·+ a1A+ a0I = 0,

where 0 is the zero matrix.

Definition (Nilpotent Maps/Matrices). T is nilpotent if T k = 0 for some k ∈ N.

Proposition (Eigenvalues of Nilpotent Matrices). Let T be a nilpotent linear map (or matrix). Then, the
only eigenvalue of T is 0.

Proof. Suppose T is nilpotent, so there exists some positive integer k such that T k = 0.
Let λ be an eigenvalue of T with corresponding eigenvector v ̸= 0, i.e.,

T (v) = λv.

Applying T k to v, we get:

T k(v) = T k−1(T (v)) = T k−1(λv) = λT k−1(v).

Repeating this process iteratively, we find:

T k(v) = λkv.

However, since T k = 0, it follows that:

T k(v) = 0 = λkv.

Because v ̸= 0, we must have λk = 0. The only solution in the field of scalars (typically C or R) is λ = 0.
Therefore, the only eigenvalue of a nilpotent matrix T is 0.

Corollary (Cayley-Hamilton for Linear Transformations). Let T : V → V be a linear transformation for V
a finite-dimensional vector space over a field k, and let

p(t) = (−1)dim(V )td + ad−1t
d−1 + · · ·+ a1t+ a0

be the characteristic polynomial for T .
Then, in L(V, V ),

p(T ) = (−1)dim(V )T d + ad−1T
d−1 + · · ·+ a1T + a0I = 0.

Definition (T-invariant Subspace). A subspace W of V is called T -invariant if T (W ) ⊆ W , i.e.,

{T (w) | w ∈ W} ⊆ W.
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Proposition. If v1, v2 are eigenvectors for T with possibly different eigenvalues, then span{v1, v2} is T -
invariant.

More generally, if v1, . . . , vk are eigenvectors for T , then span{v1, . . . , vk} is T -invariant.

Definition (T-cyclic subspace). The T -cyclic subspace at a vector v ∈ V is defined as

span{v, T (v), T 2(v), . . . } = span{T j(v) : j ∈ Z≥0}.

Remark (Infinite Span). Recall that if S is a possibly infinite set of vectors in a vector space W , then

span(S) =

∑
j∈S

αjsj : αj ∈ R, and only finitely many αj ̸= 0

 .

This allows us to pick or combine finitely many vectors from S in linear combinations.

Theorem (5.21). Let T be a linear operator on a finite-dimensional vector space V , and let W denote the
T -cyclic subspace of V generated by a nonzero vector v ∈ V . Let k = dim(W ). Then:

(a) {v, T (v), T 2(v), . . . , T k−1(v)} is a basis for W .

(b) If a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0, then the characteristic polynomial of T |W is

f(t) = (−1)k
(
a0 + a1t+ · · ·+ ak−1t

k−1 + tk
)
.

Theorem (5.20). Let T be a linear operator on a finite-dimensional vector space V , and let W be a T -
invariant subspace of V . Then the characteristic polynomial of T |W divides the characteristic polynomial of
T .

Theorem (Characteristic Polynomial of a Cyclic Subspace). Let T : V → V be a linear operator on a
finite-dimensional vector space V , and let W ⊆ V be the T -cyclic subspace generated by a vector v ∈ V . If
{v, T (v), T 2(v), . . . , Tn−1(v)} is a basis for W , then:

1. The matrix representation of T |W with respect to this basis is

[T ]B =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 ,

where Tn(v) = −a0v − a1T (v)− · · · − an−1T
n−1(v).

2. The characteristic polynomial of T |W is

fT |W (t) = (−1)n(a0 + a1t+ · · ·+ an−1t
n−1 + tn).
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Proposition (Characteristic Polynomial Decomposition). Let W ⊆ V be a T -invariant subspace of a vector
space V . Then the characteristic polynomial of T satisfies the relation

fT (t) = p(t) · q(t),

where p(t) is the characteristic polynomial of T |W , and q(t) is the characteristic polynomial of T |V/W .

Remark. To see this explicitly, take any basis B1 for W and extend it to a basis B2 = B1 ∪Q for the entire
vector space V . Then, the matrix representation of T with respect to B2 is block-upper triangular:

[T ]B2
=

(
[T |W ]B1 A1

0 A2

)
,

where A1 = 0 if and only if span(Q) is T -invariant. The determinant of tIV − [T ]B2
decomposes as

det(tIV − [T ]B2
) = det(tIW − [T |W ]B1

) · det(tIV/W −A2),

which corresponds to the factorization fT (t) = p(t) · q(t).

Proposition. If V is T cyclic, then S commutes with T if and only if S = g(T ) for polynomial g.

Proof. Assume that V is a cyclic T -module, generated by a vector v, so that

V = span{v, Tv, T 2v, . . . }.

Let m(x) be the minimal polynomial of T with respect to v, i.e., the monic polynomial of smallest degree
such that

m(T )v = 0.

Then every vector in V can be expressed as a polynomial in T of degree less than degm applied to v.
( =⇒ ) Suppose that S commutes with T , i.e., ST = TS.
Since V is generated by v, the action of S is determined by its action on v. Let us express Sv as

Sv = p(T )v,

for some polynomial p(x).
We need to show that S = p(T ). For any non-negative integer k,

ST kv = T kSv = T kp(T )v = p(T )T kv.

On the other hand,
ST kv = p(T )T kv.

This equality holds for all k, and since {v, Tv, T 2v, . . . } spans V , it follows that

S = p(T ).

Therefore, S is a polynomial in T .
( ⇐= ) Conversely, suppose that S = g(T ) for some polynomial g(x).
Since polynomials in T commute with T , we have

ST = g(T )T = Tg(T ) = TS.

Thus, S commutes with T .
Combining both directions, we conclude that S commutes with T if and only if S = g(T ) for some

polynomial g.
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3 Inner Product Spaces and Adjoints

Definition (Standard Inner Product (Real)). Let x =

x1

...
xn

 ,y =

y1
...
yn

 ∈ Rn. The standard inner

product (dot product) is defined as:

⟨x,y⟩ = x1y1 + · · ·+ xnyn ∈ R.

Remark. For x ∈ Rn, ⟨x,x⟩ = x2
1 + · · ·+ x2

n = ∥x∥2.

Definition (Standard Inner Product (Complex)). Let z =

z1
...
zn

 ,w =

w1

...
wn

 ∈ Cn. The standard inner

product of vectors is defined as:
⟨z,w⟩ = z1w1 + · · ·+ znwn.

Remark. For any w ∈ Cn, ⟨w,w⟩ ∈ R≥0, and it is equal to zero if and only if w = 0.

Remark. In R2, the cosine of the angle θ between two vectors x =

(
x1

x2

)
and y =

(
y1
y2

)
is given by:

cos θ =
⟨x,y⟩
∥x∥∥y∥

.

Definition (Inner Product). An inner product on an F -vector space V is the data of a scalar ⟨v, w⟩ ∈ F
for every v, w ∈ V , such that the following properties hold:

1. Linearity in the First Variable: For all v1, v2, w ∈ V and α1, α2 ∈ F ,

⟨α1v1 + α2v2, w⟩ = α1⟨v1, w⟩+ α2⟨v2, w⟩.

2. Conjugate Symmetry: For all v, w ∈ V ,

⟨v, w⟩ = ⟨w, v⟩.

3. Positive Definiteness: If v ∈ V is a nonzero vector, then

⟨v, v⟩ > 0,

where the result is a positive real number (even if F = C).

The inner product is a map ⟨·, ·⟩ : V × V → F .

Definition (Inner Product Space). An inner product space is the data of a vector space V over F and an
inner product on V .
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Corollary (Orthogonal Basis Expansion). Assume V is an inner product space (IPS), and let {v1, . . . , vd}
be an orthonormal basis (ONB) for V . Then, for any v ∈ V , we have:

v = ⟨v, v1⟩v1 + ⟨v, v2⟩v2 + · · ·+ ⟨v, vd⟩vd.

Theorem (Gram-Schmidt Process). Let S = {v1, . . . , vm} be a set of a finite number of vectors in an inner
product space (IPS) V . Then, there exists an orthonormal set of vectors {vr+1, . . . , vd} ⊂ V such that
{v1, . . . , vr, vr+1, . . . , vd} forms an orthonormal basis (ONB) for V .

Definition (Orthogonal Complement). Given a subspace W of an inner product space V , its orthogonal
complement is defined as:

W⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈ W}.

Theorem. If W is any subspace of a finite-dimensional inner product space (IPS) V , then:

V = W ⊕W⊥,

where W⊥ is the orthogonal complement of W .

Proof (Sketch). Use the Gram-Schmidt process to construct an orthonormal basis {w1, w2, . . . , wr} for W .
Then, extend this basis to an orthonormal basis for V by adding vectors from W⊥. The resulting basis
{w1, . . . , wr, wr+1, . . . , wd} satisfies the decomposition V = W ⊕W⊥.

Theorem. Fix an inner product space V . The function P : V → V ∗, defined by:

P (v)(w) = ⟨w, v⟩ for v, w ∈ V,

is a bijection. However, P is not linear over C if V is a complex vector space.

Theorem. Let T : V → V be a linear endomorphism of a finite-dimensional inner product space (IPS) V .
Then, there exists a unique linear map T ∗ : V → V such that:

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ for all v, w ∈ V.

This function T ∗ is linear.

Definition (Adjoint or Conjugate Transpose). The linear operator T ∗ : V → V is called the conjugate
transpose or adjoint of T .

Theorem. If we choose a basis B = {v1, . . . , vd} for a finite-dimensional inner product space (IPS) V , then
the conjugate transpose of T satisfies:

[T ∗]B = ([T ]B)
†,

where ([T ]B)
† = ([T ]B)

T is the transpose (or conjugate transpose in the complex case) of the matrix repre-
sentation of T in the basis B.
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Theorem. Let T,U : V → V be linear operators on a finite-dimensional inner product space (IPS) V .
Then, the following properties hold:

1. (U + T )∗ = U∗ + T ∗,

2. If α ∈ F , then (αT )∗ = αT ∗,

3. (U ◦ T )∗ = T ∗ ◦ U∗,

4. (T ∗)∗ = T ,

5. I∗ = I, where I is the identity operator.

Remark. These properties hold because for any composition of operators, (AB)∗ = B∗A∗, which can be
verified using the definition of the adjoint:

⟨(AB)v, w⟩ = ⟨v, (AB)∗w⟩ = ⟨v,B∗A∗w⟩.

Definition (Normal Operator). A linear operator T : V → V on a finite-dimensional inner product space
(IPS) V is called normal if:

TT ∗ = T ∗T.

Theorem (Properties of Normal Operators). Let T be a normal operator on a finite-dimensional inner
product space V . Then:

1. ∥T (v)∥ = ∥T ∗(v)∥ for any v ∈ V ,

2. T − αI is normal for any α ∈ F .
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