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Key Definitions/Axioms

Definition (Field Axioms). A field F is a set with two (binary—meaning two inputs of same type) operations
+ and - (called addition and multiplication, respectively) such that for each pair of elements x,y € F, there
are unique elements in F', denoted z+y and z-y, satisfying the following conditions for all elements a, b, c € F"

(i) a+b=b+aanda-b=b-a
(Commutativity of addition and multiplication)

(ii) (a+b)+c=a+(b+c)and (a-b)-c=a-(b-c)
(Associativity of addition and multiplication)

(iii) There exist distinct elements 0 and 1 in F such that
O+a=aandl-a=a
(Existence of identity elements for addition and multiplication)

(iv) For each element a € F' and each nonzero element b € F', there exist elements ¢ and d € F such that
a+c=0andb-d=1
(Existence of inverses for addition and multiplication)

(v) a-(b+c)=a-b+a-c
(Distributivity of multiplication over addition)

The elements x +y and x - y are called the sum and product, respectively, of z and y. The elements 0 (read
“zero”) and 1 (read “one”) are the additive and multiplicative identity elements, respectively.

Definition (Relation). A relation on a set A is a subset of the Cartesian product A x A. For elements
a,b € A, if the pair (a,b) is in this subset, we write a ~ b and say that a is related to b.

Definition (Equivalence Relation). An equivalence relation on a set A is a relation denoted by ~ that
satisfies the following three properties for all a,b,c € A:

1. Reflezivity: a ~ a for all a € A.
2. Symmetry: If a ~ b, then b ~ a.
3. Transitivity: If a ~ b and b ~ ¢, then a ~ c.

If ~ is an equivalence relation on A, and a ~ b, we say that a is equivalent to b.

Definition (Equivalence Class). Given an equivalence relation R on a set S and an element a € S, let
[a] = {b€ S| a~b}. The set [a] is called the equivalence class of the element a. Note that [a] is a subset
of S, consisting of all elements of S which are related to a under the equivalence relation R.



Definition (Quotient of a Relation). Given a set S with an equivalence relation R, define the quotient set
S/R as
S/R={[a] | a € S}.

We refer to S/R as the quotient of S by the relation R.

Definition (Integers Modulo n). Recall that Z/nZ is the set {[0],[1],[2],...,[n — 1]}. We can define two
operations on this set, as follows:
Addition: An operation +,,: Z/nZ X Z/nZ — Z/nZ, given on a,b € Z/nZ by

[a] + [b] = [a + 0],

where the + on the right-hand side is the usual addition in Z.
Multiplication: An operation ,: Z/nZ x Z/nZ — Z/nZ, given on a,b € Z/nZ by

[a] - [b] = [a - 0],

where the - on the right-hand side is the usual multiplication in Z.

Definition (Vector Space). A vector space V over a field F is a collection of objects called vectors, along
with operations of vector addition and scalar multiplication that satisfy the following eight axioms.

(VS 1) Forall Z,§in V, £+ § = ¥+ & (commutativity of addition).

(VS 2) Forall Z,¢,Zin V, (£+ ) + 2= 2+ (§ + Z) (associativity of addition).

(VS 3) There exists an element in V' denoted by 0 such that &+ 0 = & for each Z in V.

(VS 4) For each element & in V' there exists an element ¢ in V' such that & + ¢ = 0.

(VS 5) For each element ' in V, 17 = 7.

(VS 6) For each pair of elements a,b in F' and each element Z in V', (ab)Z = a(bZ).

(VS 7) For each element a in F' and each pair of elements Z, 7 in V, a(Z + §) = aZ + af.
b

(VS 8) For each pair of elements a,b in F and each element Z in V, (a 4+ b)Z = af + bZ.

Definition (Linearly Dependent). A subset S of a vector space V is called linearly dependent if there exist
a finite number of distinct vectors 7y, s, ..., U, in S and scalars ay, as, ..., a,, not all zero, such that

alﬁl + agﬂg + -4 anﬁn =0.

In this case, we also say that the vectors of S are linearly dependent.

Definition (Linearly Independent). A subset S of a vector space V' is called linearly independent if the only
scalars aq, as, ..., a, that satisfy
a1y + agtie + -+ - + apty, =0

are a; = ag = -+ - = a, = 0. In other words, the only representation of the zero vector as a linear combination
of vectors in S is the trivial representation.

Definition (Linear Transformation). A function T': V — W is a linear transformation from V to W if:

1. Forallz,y e V, T(z +y) = T(z) + T(y).



2. Forallz € Vand A € F, T(\x) = A\T'(x).

Definition (Function). A function f is the data of:
1. a set A called the domain,
2. a set B called the codomain,

3. a rule or formula that associates to each element in the domain an element in the codomain.

Definition (Kernel and Image). Let T': V' — W be linear.

e The kernel, or null space, of T is

ker(T) :={v e V | T(v) = Ow}.

e The image, or range, of T is

Im(T) :={weW|IweV:T()=uw}

Definition (Linear Combination). Let S be a subset of a vector space V over a field F.

e A linear combination of vectors in S is any finite sum a10; + -+ + an¥, = Y., a;U;, where a; € F
and 7; € S.

e The set of all linear combinations of vectors in S is called the span of S, written as span(.S).

Definition (Basis). A basis for a vector space V over F is a set B C V such that:
1. B is linearly independent.
2. span(B) = V.

We say B spans or generates V.

Definition (Left Multiplication Transformation). Given a matrix A € Mat, xm (F), we let Ly : F™ — F?
be the linear transformation defined by

:L'm xm,

Definition (Invertibility). Let X and Y be sets. A function f : X — Y is invertible if there is a function
g:Y — X such that
gof=idx and fog=idy.

Terminology: ¢ is an inverse for f. We write g = f~1.
Note: A function f: X — Y is invertible if and only if f is one-to-one and onto.



Definition (Matrix Invertibility). A matrix A € Mat,x,(F) is invertible if there exists a matrix B €
Mat,, xn (F) such that

A-B=B-A=1,.

Definition (Linear Isomorphism). A linear transformation T': V' — W is called an isomorphism if T is
invertible.
If there exists an isomorphism T : V' — W, we say that V is isomorphic to W.

Example: T : P;(R) — R?

T(a+ bzx) = (a,b)
Definition (Determinant). Let A € Mat,, x,(F). We recursively define:
e For n = 1: det(a) = a.
e Forn=2:

a b
det (c d)—ad—bc.

e For n > 3: For an n x n matrix 4, fix j € {1,...,n}. Then,

n

det(A) = (—1)" det(Ay;)aij,

i=1

where A;; is the (n — 1) x (n — 1) submatrix of A obtained by deleting the i-th row and j-th column.

Smaller Key Results

Definition (Span and L.D.). Let S be a linearly independent subset of a vector space V', and let v be a
vector in V' that is not in S. Then S U {v} is linearly dependent if and only if v € span(S).

Definition (Addition of Subspaces). Let S,T be subsets of V. Let
S+T:={v+v |ve S eT}

If S = U, and T' = U, are subspaces, then so is Uy + Us.

Theorem (1.8 in Book). Given a collection B of distinct vectors in V, B is a basis <= every vector in V
can be written uniquely as a linear combination of vectors in B.

Proposition (Determinant Properties). We have the following properties of the determinant:

1. Let A be an n x n matrix with entries in F. Then det(A4) # 0 if and only if A is invertible.



LS

The definition of the determinant doesn’t depend on the choice of i € {1,...,n}.
det(A) = det(A?).

det(AB) = det(A) - det(B).

The function det : (F™)*™ — F is linear in each argument.

Given a matrix A € Mat,, x,,(F),
A= (171 ﬁn).

Let A(i,7) denote the matrix obtained by swapping the i-th and j-th columns. Let A*(i,5, A) denote
the matrix obtained by adding A%; to v;. Then:

o det(A(i, 7)) = —det(A)
o det(A*(i,5,A\)) = det(A)

If A has a row or column that is all zeros, then det(A4) = 0.

Major Theorems

Theorem (The Replacement Theorem). Let V' be a vector space over a field F.
If we are given sets G, L C V such that:

e G has n elements and span(G) =V,

e [ has m elements and is linearly independent,

then:

e m<mn,

e There exists H C V with n — m elements such that L U H generates V.

Theorem (Corollaries to the Replacement Theorem). Assume the sets are finite

1.
2.
3.

Any two bases have the same number of elements.
We call the number of elements in a basis the dimension of V.
If L C V is linearly independent, then #L < dim(V). If G C V spans V, then #G > dim(V).

If span(S) = V and #S = dim(V), then S is a basis for V. If L is linearly independent and #L =
dim(V'), then L is a basis for V.

Every linearly independent set in V' is contained in a basis. Every spanning set in V' contains a basis.



Theorem (The Dimension Theorem). For V, W vector spaces over F, let T': V' — W be a linear transfor-
mation.

dim(ker(7)) + dim(Im(T)) = dim(V)
where dim(ker(7)) is the nullity n(7") and dim(Im(7')) is the rank (7).

Theorem (Linear Transformation Defined on Basis Vectors). If B = {y,...,d,} is a basis for V' and
{W1,...,W,} C W, then there is a unique linear transformation 7" : V' — W such that T'(u;) = w; for all 4.

Coordinate Representation and Change of Bases

Definition (Coordinate Representation of Vectors). Given a basis B = {uy,...,4,} for V and ¥ € V, the
B-coordinate representation, or B-coordinate vector, for ¢ is the column vector

ai
[17]3 = eF”,
Qp

where a; € F are the unique scalars such that

U=aily + -+ a,ly,.

Theorem (Coordinate Transformation). Let T : V' — W be linear, with dim(V) and dim(W) finite. Let
be a basis for V' and v a basis for W. Then

Theorem (Property of Coordinate Matrices). Let V, W, Z be vector spaces over F, with bases §,v,d. Let
T:V —-W and H: W — Z be linear. Then

[H o T)} = [H[TT)-

Theorem (Properties of Coordinate Matrices (2.8)). Suppose T1,Ts : V' — W are linear, with bases /5 for
V and v for W. Then:

L [Ty + T} = [T1]} + [T2] 5
2. For all € F, \T]7, = A[T1]}

3. [idw]j = I,., where n = dim(V))



Theorem (Equivalent Statement to Transformation Equality). Let T: V — W and S : V — W be linear.
Let S be a finite basis for V' and v a finite basis for W. Then T = S if and only if

(77 = IS

Theorem (Matrices and Linear Transformations). Let A € Mat,,«n(F). Let 51, 82 be the standard bases
for F™ and F™ (respectively). Then:

1 [La]3?=A

2. For all B € Mat;y, (F),
LpoLs=Lga

Theorem (Theorems on Invertibility). We have the following theorems
a A matrix A € Mat,,«,,(F) is invertible if and only if L4 : F* — F™ is invertible and (L)™' = L 1.

b Suppose V, W are finite-dimensional, 3 is a basis for V, and v is a basis for W. Then T : V — W is
invertible if and only if [T} is invertible. If T" is invertible, then

Lemma (On Coordinate Matrix Properties). Let A € Mat,, x,(F), B € Mat;x,,(F). Let 51, 32,83 be the
standard bases for F*, F™, F! (respectively). Then:

L (LAl =A
2. Lpa=LgolLy

Definition (Change of Coordinate Matrix). Let V be a finite-dimensional vector space over a field F and
let 3, 8" be two bases for V. The matrix
Q = [ldv]},

is a change of coordinates matrix that changes 3’-coordinates into 3-coordinates.

Definition (Notational Note). Let T': V — V. If 8, 8" are both finite bases for V, then:

[T = [T,
[T]p = [T]5,

Theorem (Theorems on Change of Coordinate Matrices). We have the following:
1. Q is invertible and Q! = [idy]} .

2. For every v € V,



3. Q7HTpQ = [Tl

Definition (Similar Matrices). Matrices A, B € Mat,,«,(F) are similar if there exists an invertible matrix
Q € Mat,,«n, (F) such that
A=Q'BQ.

We also have the following facts:
o If A=[T]|3 and B = [T, for some T': V — V, dimV = n, then A is similar to B.
e If A is similar to B, then det(A) = det(B).

e If A is similar to B, then B is similar to A.

Eigenvalues, Eigenvectors, and Diagonalizability

Definition (Eigenvalue/Eigenvector). Given ¥ € V nonzero and T : V — V', ¥ is an eigenvector of T if
there exists A € F such that
T(¥) = A\0.

A is called an eigenvalue for T.

Definition (Eigenspace). Let A € F be an eigenvalue of T': V' — V. Then the A-eigenspace of T is the
subset
E,:={veV |TW) =0} CV.
In other words, it is the set of all eigenvectors with eigenvalue A union {6}
If A is an eigenvalue of A € Mat,,«,,(F), then the A-eigenspace of A is the A-eigenspace of L4 : F™ — F™.
In other words, the A-eigenspace of A is

(G € F™ | La(7) = A7)

Lemma (Relation to Coordinate Matrices). Let T : V. — V be linear with dimV = n and let A €
Mat, xn(F). Let 8 = {#1,...,0,} be a basis for V.

1. ¥ € V is an eigenvector for T' with eigenvalue X if and only if [U]g is an eigenvector for [T']z with
eigenvalue A.

2. ¥ € F™ is an eigenvector for A with eigenvalue A if and only if ¥ € F" is an eigenvector for L4 with
eigenvalue A.



Theorem (Calculating Eigenvalues). Suppose dimV = n and f is any basis for V. Then X is an eigenvalue
for T:V — V if and only if
det(/\In — [T}B) =0.

The eigenspace E, is given by
E) =ker(Aidy — 7).

Definition (Characteristic Polynomial). Given A € Mat,,«,(F), the characteristic polynomial of A is
fa(t) = det(tI, — A).
Given T : V — V., V finite-dimensional, the characteristic polynomial of 7" is

fr(t) = fir),(t) for any basis 3 of V.

Definition (Algebraic and Geometric Multiplicities). Suppose

T

fr(t) =TI =)™ a(),

i=1
where:
o )\, eF,
o \; # )\ for i # j,
e ¢(t) has no roots in F.

Note: Ap,..., A, are exactly the eigenvalues of T

Definition (Multiplicities). The geometric multiplicity of an eigenvalue XA of T : V' — V is dim(E}).
The algebraic multiplicity of X\;,;1 < i < r,is n;, as in the above definition. This is the maximal power of
(t - )\z) dividing fT (t)

Definition (Eigenbasis). Let T : V — V and let 8 = {#1,...,¥,} be a basis for V. If all @; are eigenvectors
for T', we call 8 an eigenbasis.
By definition, Vi € {1,...,n}, 3\; € F such that T(¢;) = \;¥;.

Theorem (Eigenbasis and Diagonal Matrix). In summary, we’'ve proved: [ is an eigenbasis if and only if
[T is diagonal.

Definition (Diagonalizable). A transformation T : V — V is diagonalizable if there is a basis 8 for V such
that [T is a diagonal matrix.
A matrix A € Mat,, «,(F) is diagonalizable if L, : F* — F™ is diagonalizable.

Definition (Splits). A polynomial f(t) = ag + a1t + ... + ant™ with a; € F splits over F if f(t) factors into
linear terms with roots in [F:
f) = (=)™ (= A)™,
where A\; € F and A; # A; for i # j.
Field matters!



Lemma (Diagonalizable Equivalent Conditions). Let V be finite-dimensional. Let T : V' — V be linear and
A € Mat, xn(F).

1. Let «y be a basis for V. T is diagonalizable if and only if [T, is diagonalizable.

2. A is diagonalizable if and only if A is similar to a diagonal matrix.

Theorem (More equivalent conditions to Diagonalizable). T is diagonalizable <
1. fr(t) splits over F,

2. For all eigenvalues of T, the algebraic multiplicity equals the geometric multiplicity.

Definition (Direct Sum). Let Wy,..., W, C V be subspaces. Wy + --- + W, is a direct sum, written as
Wi@®---®W,, if for all w e Wy + --- + W,., the representation w = uq + - - - + u, with u; € W; is unique.
That is, if ug + -+ 4+ u, = uj + -+ + ul. for u;,u; € W;, then u; = ) for all 4.

Lemma (A). Let T:V — V and dim V = n. Then fr(¢) has degree n.

Let A € F be an eigenvalue for T : V — V. Then:

1 < Geometric multiplicity of A < Algebraic multiplicity of A.

Lemma (B). Let A1,..., A, be eigenvalues of T : V' — V. Then the sum E), + -+ E), is direct.

Lemma (C). Let V be finite-dimensional over F, T : V' — V with Aq,..., A, distinct roots of fr(¢). Then
T has a basis of eigenvectors for 7" if and only if V = Ey, +--- + E),.

1 Inner Product Spaces

Definition (Inner Product). Let V be a vector space over F = R or F = C. An inner product on V is a

function
(,): VXV =T
(written as (z,y) for x,y € V) such that for all z,y,z € V and all ¢ € F:
(a) (x +z,y) = (z,y) + (z,y) (Linearity in the first variable)
(b)
) y) = (y,z) (Conjugate symmetry)
)

(c

(
(cx,y) = clz,y)
(z,

(d) I

f 2 #0, then (z,z) >0 (Positive-definiteness)
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Theorem (IP Properties). Let V' be an inner product space over F =R or F = C. Then for all z,y,z € V
and all ¢ € F:

Theorem (IP Properties Continued). If V is an inner product space over F, where F = R or F = C, then:

(a) For all z € V and c € F:
llex]| = fe |||

where ¢ = a +ib € C and || = vaZ + b2.
(b) ||z =0 <= z=0.

(¢) If 2 # 0, then T is normal.

Theorem (Orthogonal Projections). Let V' be an inner product space over F = R or F = C. Let 8 =
{?1,...,U,} be an orthogonal basis. Given x € V,

Corollary (Orthonormal Basis). If {#1,...,9,} is an orthonormal basis (ONB) for V, then for all x € V,

n

Tr = Z<l‘, 171)’(71

i=1

Definition (Orthogonal Projection). Let V' be an inner product space. Let U C V be a subspace. Given
an orthonormal basis (ONB) for U, {1, ...,us} C U, the orthogonal projection onto U is a function

defined by

Proposition (Minimum value for projection). Suppose V is finite-dimensional. Let U be a subspace of V|
and let v € V. Then the value ||v — & is minimized when Z = Py (v), where Py is the orthogonal projection
onto U.
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Lemma (Pythagorean Theorem). Let & € U and v € V. Then
lo = ZI* = [Py (v) = &* + | Pu (v) — o>

This is the Pythagorean theorem.

Theorem (Idea behind Gram Schmidt). Let V' be an inner product space over F = R or F = C. Let
S ={s1,...,8,} be a linearly independent set in V. Let U; = span{sy, ..., s;}. Define:

tl = 81,

tj =s; — Pu;_,(s5)-

Then the set S’ = {t1,...,t,} is orthogonal, and

span(S) = span(S’).

Furthermore, the set S” = { b HZII} is an orthonormal basis (ONB) for span(S).

Theorem (Gram-Schmidt Algorithm). Let S = {w1,...,w,} be a linearly independent set in V. Define:

v = Wy,
k—1 (e, v;)
vkzwk—z k’;vj for 2 < k < n.
2o

Let 8" ={v1,...,v,}. Then S’ is orthogonal. Furthermore, let

S,,:{vl v}
foall”™" [lon]

Then S” is orthonormal.

Definition (Adjoint Operator). Given T : V — V', let T* : V' — V be determined by (T'(z),y) = (x, T*(y)).

Theorem (On Adjoint Operators). Let T : V — V be a linear operator, and let 8 be an orthonormal basis
(ONB) for V. Then,
[T"]s = [T15

where for A € Mnxn(F)v (A*)z] = A]L

Definition (Normal and Self-adjoint). We say that T': V — V is normal if TT* = T*T.
We say that T : V — V is self-adjoint if T* =T.
We say that A € M,,«,(F) is normal if AA* = A*A.
We say that A € M, «,(F) is self-adjoint if A* = A.

Theorem (* - Stronger diagonalization). Let 7' : V' — V be linear.
o If F =C, T is normal <= there exists an orthonormal basis (ONB) for V of eigenvectors for T

o If F =R, T is self-adjoint <= there exists an ONB for V of eigenvectors for T'.
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Theorem (Facts about Adjoints). Let T : V — V be normal. Then:
L |T@)] = |17 ()| Vo € V.
2. T —clI is normal Vc € F.
3. If  is an eigenvector for T with eigenvalue ), then z is an eigenvector for 7% with eigenvalue \.

4. Tt XN #£ X, 2,y €V, T(x) = Mz, T(y) = Aoy, then (z,y) = 0. i.e. Eigenvectors for distinct eigenvalues
are orthogonal.

Theorem (Adjoints and Kernels and Images). Let T': V — V be a linear operator on a finite-dimensional
inner product space V', and let T* be the adjoint of 7. Then the following properties hold:

1. Im(T*)* = ker(T)
2. If V is finite-dimensional, Im(T*) = ker(T)*
3. Im(T)* = ker(T*)
4. If V is finite-dimensional, Im(T') = ker(7*)~*

Theorem (Schur’s). Suppose that T': V — V is linear and fr(t) splits. Then there exists an orthonormal
basis (ONB) for V such that [T]g is upper-triangular.

Theorem (Fundamental Theorem of Algebra). Every non-constant polynomial g(t) € Poly(C) has a root
in C.

Theorem (Spectral Theorem). Let V' be a finite-dimensional inner product space over F = R or C.
Let T: V — V be linear and normal if F = C, self-adjoint if F = R.
Let A1,..., Ax be the eigenvalues of T, and let W; = E,.
Then:

1. V=W eWe®---®d W,

2. Wi LY 5w,
i

Let T; = Py, for 1 <i<k:
3. I =T+ -+ 1Ty
4. T=MTy + -+ Ny

What does this mean?
(4): Decompose T into scaled projection operators.
The spectral decomposition of T .
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