Math 115AH Notes

Brendan Connelly

April to June 2024

Key Definitions/Axioms

Definition (Field Axioms). A field F is a set with two (binary–meaning two inputs of same type) operations + and · (called addition and multiplication, respectively) such that for each pair of elements $x, y \in F$, there are unique elements in F, denoted $x+y$ and $x \cdot y$, satisfying the following conditions for all elements $a, b, c \in F$:

- (i) $a + b = b + a$ and $a \cdot b = b \cdot a$ (Commutativity of addition and multiplication)
- (ii) $(a + b) + c = a + (b + c)$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associativity of addition and multiplication)
- (iii) There exist distinct elements 0 and 1 in F such that $0 + a = a$ and $1 \cdot a = a$ (Existence of identity elements for addition and multiplication)
- (iv) For each element $a \in F$ and each nonzero element $b \in F$, there exist elements c and $d \in F$ such that $a + c = 0$ and $b \cdot d = 1$ (Existence of inverses for addition and multiplication)
- (v) $a \cdot (b+c) = a \cdot b + a \cdot c$ (Distributivity of multiplication over addition)

The elements $x + y$ and $x \cdot y$ are called the sum and product, respectively, of x and y. The elements 0 (read "zero") and 1 (read "one") are the additive and multiplicative identity elements, respectively.

Definition (Relation). A relation on a set A is a subset of the Cartesian product $A \times A$. For elements a, b ∈ A, if the pair (a, b) is in this subset, we write $a \sim b$ and say that a is related to b.

Definition (Equivalence Relation). An *equivalence relation* on a set A is a relation denoted by $∼$ that satisfies the following three properties for all $a, b, c \in A$:

- 1. Reflexivity: $a \sim a$ for all $a \in A$.
- 2. Symmetry: If $a \sim b$, then $b \sim a$.
- 3. Transitivity: If $a \sim b$ and $b \sim c$, then $a \sim c$.

If \sim is an equivalence relation on A, and $a \sim b$, we say that a is equivalent to b.

Definition (Equivalence Class). Given an equivalence relation R on a set S and an element $a \in S$, let $[a] = \{b \in S \mid a \sim b\}.$ The set $[a]$ is called the *equivalence class* of the element a. Note that $[a]$ is a subset of S, consisting of all elements of S which are related to a under the equivalence relation R .

Definition (Quotient of a Relation). Given a set S with an equivalence relation R, define the quotient set S/R as

$$
S/R = \{ [a] \mid a \in S \}.
$$

We refer to S/R as the quotient of S by the relation R.

Definition (Integers Modulo *n*). Recall that $\mathbb{Z}/n\mathbb{Z}$ is the set $\{[0], [1], [2], \ldots, [n-1]\}$. We can define two operations on this set, as follows:

Addition: An operation $+_n: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, given on $a, b \in \mathbb{Z}/n\mathbb{Z}$ by

$$
[a] + [b] = [a + b],
$$

where the $+$ on the right-hand side is the usual addition in \mathbb{Z} .

Multiplication: An operation $\cdot_n: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, given on $a, b \in \mathbb{Z}/n\mathbb{Z}$ by

$$
[a] \cdot [b] = [a \cdot b],
$$

where the \cdot on the right-hand side is the usual multiplication in \mathbb{Z} .

Definition (Vector Space). A vector space V over a field \mathbb{F} is a collection of objects called vectors, along with operations of vector addition and scalar multiplication that satisfy the following eight axioms.

(VS 1) For all \vec{x}, \vec{y} in V, $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (commutativity of addition).

(VS 2) For all $\vec{x}, \vec{y}, \vec{z}$ in V , $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ (associativity of addition).

(VS 3) There exists an element in V denoted by 0 such that $\vec{x} + 0 = \vec{x}$ for each \vec{x} in V.

(VS 4) For each element \vec{x} in V there exists an element \vec{y} in V such that $\vec{x} + \vec{y} = 0$.

(VS 5) For each element \vec{x} in V , $1\vec{x} = \vec{x}$.

(VS 6) For each pair of elements a, b in F and each element \vec{x} in V, $(ab)\vec{x} = a(b\vec{x})$.

- (VS 7) For each element a in F and each pair of elements \vec{x}, \vec{y} in V, $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$.
- (VS 8) For each pair of elements a, b in F and each element \vec{x} in V, $(a + b)\vec{x} = a\vec{x} + b\vec{x}$.

Definition (Linearly Dependent). A subset S of a vector space V is called *linearly dependent* if there exist a finite number of distinct vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ in S and scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$
a_1\vec{u}_1 + a_2\vec{u}_2 + \cdots + a_n\vec{u}_n = \vec{0}.
$$

In this case, we also say that the vectors of S are linearly dependent.

Definition (Linearly Independent). A subset S of a vector space V is called *linearly independent* if the only scalars a_1, a_2, \ldots, a_n that satisfy

$$
a_1\vec{u}_1 + a_2\vec{u}_2 + \cdots + a_n\vec{u}_n = \vec{0}
$$

are $a_1 = a_2 = \cdots = a_n = 0$. In other words, the only representation of the zero vector as a linear combination of vectors in S is the trivial representation.

Definition (Linear Transformation). A function $T: V \to W$ is a **linear transformation** from V to W if:

1. For all $x, y \in V$, $T(x + y) = T(x) + T(y)$.

2. For all $x \in V$ and $\lambda \in \mathbb{F}$, $T(\lambda x) = \lambda T(x)$.

Definition (Function). A function f is the data of:

- 1. a set A called the domain,
- 2. a set B called the **codomain**,
- 3. a rule or formula that associates to each element in the domain an element in the codomain.

Definition (Kernel and Image). Let $T: V \to W$ be linear.

• The kernel, or null space, of T is

$$
\ker(T) := \{ v \in V \mid T(v) = \vec{0}_W \}.
$$

• The image, or range, of T is

Im(T) :=
$$
\{w \in W \mid \exists v \in V : T(v) = w\}.
$$

Definition (Linear Combination). Let S be a subset of a vector space V over a field \mathbb{F} .

- A linear combination of vectors in S is any finite sum $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = \sum_{i=1}^n a_i\vec{v}_i$, where $a_i \in \mathbb{F}$ and $\vec{v}_i \in S$.
- The set of all linear combinations of vectors in S is called the span of S, written as $\text{span}(S)$.

Definition (Basis). A basis for a vector space V over \mathbb{F} is a set $\mathcal{B} \subseteq V$ such that:

- 1. B is linearly independent.
- 2. $\text{span}(\mathcal{B}) = V$.

We say β spans or generates V.

Definition (Left Multiplication Transformation). Given a matrix $A \in Mat_{n \times m}(\mathbb{F})$, we let $L_A : \mathbb{F}^m \to \mathbb{F}^n$ be the linear transformation defined by

$$
L_A \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}.
$$

Definition (Invertibility). Let X and Y be sets. A function $f: X \to Y$ is invertible if there is a function $g: Y \to X$ such that

 $g \circ f = id_X$ and $f \circ g = id_Y$.

Terminology: g is an *inverse* for f. We write $g = f^{-1}$.

Note: A function $f: X \to Y$ is invertible if and only if f is one-to-one and onto.

Definition (Matrix Invertibility). A matrix $A \in Mat_{n \times n}(\mathbb{F})$ is invertible if there exists a matrix $B \in$ $\text{Mat}_{n\times n}(\mathbb{F})$ such that

$$
A \cdot B = B \cdot A = I_n.
$$

Definition (Linear Isomorphism). A linear transformation $T: V \to W$ is called an *isomorphism* if T is invertible.

If there exists an isomorphism $T: V \to W$, we say that V is isomorphic to W.

Example: $T: P_1(\mathbb{R}) \to \mathbb{R}^2$

$$
T(a + bx) = (a, b)
$$

Definition (Determinant). Let $A \in Mat_{n \times n}(\mathbb{F})$. We recursively define:

- For $n = 1$: $det(a) = a$.
- For $n = 2$:

$$
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.
$$

• For $n \geq 3$: For an $n \times n$ matrix A, fix $j \in \{1, \ldots, n\}$. Then,

$$
\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \det(A_{ij}) a_{ij},
$$

where A_{ij} is the $(n-1) \times (n-1)$ submatrix of A obtained by deleting the *i*-th row and j-th column.

Smaller Key Results

Definition (Span and L.D.). Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.

Definition (Addition of Subspaces). Let S, T be subsets of V. Let

$$
S + T := \{ v + v' \mid v \in S, v' \in T \}.
$$

If $S = U_1$ and $T = U_2$ are subspaces, then so is $U_1 + U_2$.

Theorem (1.8 in Book). Given a collection B of distinct vectors in V, B is a basis \iff every vector in V can be written uniquely as a linear combination of vectors in β .

Proposition (Determinant Properties). We have the following properties of the determinant:

1. Let A be an $n \times n$ matrix with entries in F. Then $\det(A) \neq 0$ if and only if A is invertible.

- 2. The definition of the determinant doesn't depend on the choice of $i \in \{1, \ldots, n\}$.
- 3. $det(A) = det(A^t)$.
- 4. $\det(AB) = \det(A) \cdot \det(B)$.
- 5. The function det : $(\mathbb{F}^n)^{\times n} \to \mathbb{F}$ is linear in each argument.
- 6. Given a matrix $A \in \text{Mat}_{n \times n}(\mathbb{F}),$

 $A = \begin{pmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{pmatrix}$.

Let $A(i, j)$ denote the matrix obtained by swapping the *i*-th and *j*-th columns. Let $A^*(i, j, \lambda)$ denote the matrix obtained by adding $\lambda \vec{v}_j$ to \vec{v}_i . Then:

- det $(A(i, j)) = -\det(A)$
- det $(A^*(i,j,\lambda)) = \det(A)$
- 7. If A has a row or column that is all zeros, then $\det(A) = 0$.

Major Theorems

Theorem (The Replacement Theorem). Let V be a vector space over a field \mathbb{F} . If we are given sets $G, L \subseteq V$ such that:

- G has n elements and $\text{span}(G) = V$,
- L has m elements and is linearly independent,

then:

- \bullet $m \leq n$,
- There exists $H \subseteq V$ with $n m$ elements such that $L \cup H$ generates V.

Theorem (Corollaries to the Replacement Theorem). Assume the sets are finite

- 1. Any two bases have the same number of elements.
- 2. We call the number of elements in a basis the dimension of V .
- 3. If $L \subseteq V$ is linearly independent, then $\#L \leq \dim(V)$. If $G \subseteq V$ spans V, then $\#G \geq \dim(V)$.
- 4. If $\text{span}(S) = V$ and $\#S = \dim(V)$, then S is a basis for V. If L is linearly independent and $\#L =$ $dim(V)$, then L is a basis for V.
- 5. Every linearly independent set in V is contained in a basis. Every spanning set in V contains a basis.

Theorem (The Dimension Theorem). For V, W vector spaces over \mathbb{F} , let $T: V \to W$ be a linear transformation.

$$
\dim(\ker(T)) + \dim(\text{Im}(T)) = \dim(V)
$$

where dim(ker(T)) is the nullity $n(T)$ and dim(Im(T)) is the rank $r(T)$.

Theorem (Linear Transformation Defined on Basis Vectors). If $\mathcal{B} = \{\vec{u}_1, \ldots, \vec{u}_n\}$ is a basis for V and ${\lbrace \vec{w}_1, \ldots, \vec{w}_n \rbrace} \subset W$, then there is a unique linear transformation $T: V \to W$ such that $T(\vec{u}_i) = \vec{w}_i$ for all i.

Coordinate Representation and Change of Bases

Definition (Coordinate Representation of Vectors). Given a basis $\mathcal{B} = \{\vec{u}_1, \dots, \vec{u}_n\}$ for V and $\vec{v} \in V$, the B-coordinate representation, or B-coordinate vector, for \vec{v} is the column vector

$$
[\vec{v}]_{\mathcal{B}} := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n,
$$

where $a_i \in \mathbb{F}$ are the unique scalars such that

$$
\vec{v} = a_1 \vec{u}_1 + \dots + a_n \vec{u}_n.
$$

Theorem (Coordinate Transformation). Let $T: V \to W$ be linear, with $\dim(V)$ and $\dim(W)$ finite. Let β be a basis for V and γ a basis for W. Then

$$
[T]^{\gamma}_{\beta}[\vec{v}]_{\beta}=[T(\vec{v})]_{\gamma}.
$$

Theorem (Property of Coordinate Matrices). Let V, W, Z be vector spaces over F, with bases β, γ, δ . Let $T: V \to W$ and $H: W \to Z$ be linear. Then

$$
[H \circ T]^\delta_\beta = [H]^\delta_\gamma [T]^\gamma_\beta.
$$

Theorem (Properties of Coordinate Matrices (2.8)). Suppose $T_1, T_2 : V \to W$ are linear, with bases β for V and γ for W. Then:

- 1. $[T_1 + T_2]_{\beta}^{\gamma} = [T_1]_{\beta}^{\gamma} + [T_2]_{\beta}^{\gamma}$
- 2. For all $\lambda \in \mathbb{F}$, $[\lambda T_1]_{\beta}^{\gamma} = \lambda [T_1]_{\beta}^{\gamma}$
- 3. $[\text{id}_W]_{\beta}^{\beta} = I_n$, where $n = \text{dim}(V)$

Theorem (Equivalent Statement to Transformation Equality). Let $T: V \to W$ and $S: V \to W$ be linear. Let β be a finite basis for V and γ a finite basis for W. Then $T = S$ if and only if

$$
[T]^\gamma_\beta = [S]^\gamma_\beta.
$$

Theorem (Matrices and Linear Transformations). Let $A \in Mat_{m \times n}(\mathbb{F})$. Let β_1, β_2 be the standard bases for \mathbb{F}^n and \mathbb{F}^m (respectively). Then:

- 1. $[L_A]_{\beta_1}^{\beta_2} = A$
- 2. For all $B \in Mat_{l \times m}(\mathbb{F}),$

$$
L_B \circ L_A = L_{B \cdot A}
$$

Theorem (Theorems on Invertibility). We have the following theorems

- a A matrix $A \in \text{Mat}_{n \times n}(\mathbb{F})$ is invertible if and only if $L_A : \mathbb{F}^n \to \mathbb{F}^n$ is invertible and $(L_A)^{-1} = L_{A^{-1}}$.
- b Suppose V, W are finite-dimensional, β is a basis for V, and γ is a basis for W. Then $T: V \to W$ is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible. If T is invertible, then

$$
[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}.
$$

Lemma (On Coordinate Matrix Properties). Let $A \in Mat_{m \times n}(\mathbb{F})$, $B \in Mat_{l \times m}(\mathbb{F})$. Let $\beta_1, \beta_2, \beta_3$ be the standard bases for \mathbb{F}^n , \mathbb{F}^m , \mathbb{F}^l (respectively). Then:

- 1. $[L_A]_{\beta_1}^{\beta_2} = A$
- 2. $L_{B\cdot A} = L_B \circ L_A$

Definition (Change of Coordinate Matrix). Let V be a finite-dimensional vector space over a field \mathbb{F} and let β , β' be two bases for V. The matrix

$$
Q=[\operatorname{Id}_V]_{\beta'}^{\beta}
$$

is a change of coordinates matrix that changes $β'$ -coordinates into $β$ -coordinates.

Definition (Notational Note). Let $T: V \to V$. If β, β' are both finite bases for V, then:

$$
[T]_{\beta} = [T]_{\beta}^{\beta},
$$

$$
[T]_{\beta'} = [T]_{\beta'}^{\beta'}.
$$

Theorem (Theorems on Change of Coordinate Matrices). We have the following:

- 1. Q is invertible and $Q^{-1} = [\mathrm{id}_V]_{\beta}^{\beta'}$ $_\beta^\triangleright$.
- 2. For every $\vec{v} \in V$,

$$
[\vec{v}]_{\beta}=Q[\vec{v}]_{\beta'}.
$$

3. $Q^{-1}[T]_{\beta}Q=[T]_{\beta'}$.

Definition (Similar Matrices). Matrices $A, B \in Mat_{n \times n}(\mathbb{F})$ are *similar* if there exists an invertible matrix $Q \in \text{Mat}_{n \times n}(\mathbb{F})$ such that

$$
A = Q^{-1}BQ.
$$

We also have the following facts:

- If $A = [T]_{\beta}$ and $B = [T]_{\gamma}$ for some $T: V \to V$, dim $V = n$, then A is similar to B.
- If A is similar to B, then $\det(A) = \det(B)$.
- If A is similar to B , then B is similar to A .

Eigenvalues, Eigenvectors, and Diagonalizability

Definition (Eigenvalue/Eigenvector). Given $\vec{v} \in V$ nonzero and $T : V \to V$, \vec{v} is an *eigenvector* of T if there exists $\lambda \in \mathbb{F}$ such that

$$
T(\vec{v}) = \lambda \vec{v}.
$$

 λ is called an *eigenvalue* for T.

Definition (Eigenspace). Let $\lambda \in \mathbb{F}$ be an eigenvalue of $T: V \to V$. Then the λ -eigenspace of T is the subset

$$
E_{\lambda} := \{ \vec{v} \in V \mid T(\vec{v}) = \lambda \vec{v} \} \subseteq V.
$$

In other words, it is the set of all eigenvectors with eigenvalue λ union $\{\vec{0}\}$.

If λ is an eigenvalue of $A \in Mat_{n \times n}(\mathbb{F})$, then the λ -eigenspace of A is the λ -eigenspace of $L_A : \mathbb{F}^n \to \mathbb{F}^n$. In other words, the λ -eigenspace of A is

$$
\{\vec{v} \in \mathbb{F}^n \mid L_A(\vec{v}) = \lambda \vec{v}\}.
$$

Lemma (Relation to Coordinate Matrices). Let $T: V \to V$ be linear with dim $V = n$ and let $A \in$ $\text{Mat}_{n\times n}(\mathbb{F})$. Let $\beta = {\vec{v}_1, \ldots, \vec{v}_n}$ be a basis for V.

- 1. $\vec{v} \in V$ is an eigenvector for T with eigenvalue λ if and only if $[\vec{v}]_{\beta}$ is an eigenvector for $[T]_{\beta}$ with eigenvalue λ .
- 2. $\vec{v} \in \mathbb{F}^n$ is an eigenvector for A with eigenvalue λ if and only if $\vec{v} \in \mathbb{F}^n$ is an eigenvector for L_A with eigenvalue λ .

Theorem (Calculating Eigenvalues). Suppose dim $V = n$ and β is any basis for V. Then λ is an eigenvalue for $T: V \to V$ if and only if

$$
\det(\lambda I_n - [T]_{\beta}) = 0.
$$

$$
E_{\lambda} = \ker(\lambda \mathrm{id}_V - T).
$$

The eigenspace E_{λ} is given by

Definition (Characteristic Polynomial). Given $A \in Mat_{n \times n}(\mathbb{F})$, the *characteristic polynomial* of A is

$$
f_A(t) = \det(tI_n - A).
$$

Given $T: V \to V$, V finite-dimensional, the characteristic polynomial of T is

 $f_T(t) := f_{[T]_\beta}(t)$ for any basis β of V.

Definition (Algebraic and Geometric Multiplicities). Suppose

$$
f_T(t) = \prod_{i=1}^r (t - \lambda_i)^{n_i} g(t),
$$

where:

- $\lambda_i \in \mathbb{F}$,
- $\lambda_i \neq \lambda_j$ for $i \neq j$,
- $q(t)$ has no roots in \mathbb{F} .

Note: $\lambda_1, \ldots, \lambda_r$ are exactly the eigenvalues of T.

Definition (Multiplicities). The geometric multiplicity of an eigenvalue λ of $T : V \to V$ is $\dim(E_{\lambda})$.

The *algebraic multiplicity* of λ_i , $1 \leq i \leq r$, is n_i , as in the above definition. This is the maximal power of $(t - \lambda_i)$ dividing $f_T(t)$.

Definition (Eigenbasis). Let $T: V \to V$ and let $\beta = {\vec{v}_1, \dots, \vec{v}_n}$ be a basis for V. If all \vec{v}_i are eigenvectors for T, we call β an *eigenbasis*.

By definition, $\forall i \in \{1, \ldots, n\}$, $\exists \lambda_i \in \mathbb{F}$ such that $T(\vec{v}_i) = \lambda_i \vec{v}_i$.

Theorem (Eigenbasis and Diagonal Matrix). In summary, we've proved: β is an eigenbasis if and only if $[T]_\beta$ is diagonal.

Definition (Diagonalizable). A transformation $T: V \to V$ is *diagonalizable* if there is a basis β for V such that $[T]_\beta$ is a diagonal matrix.

A matrix $A \in \text{Mat}_{n \times n}(\mathbb{F})$ is *diagonalizable* if $L_A : \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable.

Definition (Splits). A polynomial $f(t) = a_0 + a_1t + \ldots + a_nt^n$ with $a_i \in \mathbb{F}$ splits over \mathbb{F} if $f(t)$ factors into linear terms with roots in F:

$$
f(t)=(t-\lambda_1)^{n_1}\cdots (t-\lambda_r)^{n_r},
$$

where $\lambda_i \in \mathbb{F}$ and $\lambda_i \neq \lambda_j$ for $i \neq j$. Field matters!

Lemma (Diagonalizable Equivalent Conditions). Let V be finite-dimensional. Let $T: V \to V$ be linear and $A \in \text{Mat}_{n \times n}(\mathbb{F}).$

- 1. Let γ be a basis for V. T is diagonalizable if and only if $[T]_{\gamma}$ is diagonalizable.
- 2. A is diagonalizable if and only if A is similar to a diagonal matrix.

Theorem (More equivalent conditions to Diagonalizable). T is diagonalizable \Leftrightarrow

- 1. $f_T(t)$ splits over \mathbb{F} ,
- 2. For all eigenvalues of T, the algebraic multiplicity equals the geometric multiplicity.

Definition (Direct Sum). Let $W_1, \ldots, W_r \subseteq V$ be subspaces. $W_1 + \cdots + W_r$ is a direct sum, written as $W_1 \oplus \cdots \oplus W_r$, if for all $w \in W_1 + \cdots + W_r$, the representation $w = u_1 + \cdots + u_r$ with $u_i \in W_i$ is unique. That is, if $u_1 + \cdots + u_r = u'_1 + \cdots + u'_r$ for $u_i, u'_i \in W_i$, then $u_i = u'_i$ for all i.

Lemma (A). Let $T: V \to V$ and dim $V = n$. Then $f_T(t)$ has degree n. Let $\lambda \in \mathbb{F}$ be an eigenvalue for $T: V \to V$. Then:

 $1 \leq$ Geometric multiplicity of $\lambda \leq$ Algebraic multiplicity of λ .

Lemma (B). Let $\lambda_1, \ldots, \lambda_r$ be eigenvalues of $T : V \to V$. Then the sum $E_{\lambda_1} + \cdots + E_{\lambda_r}$ is direct.

Lemma (C). Let V be finite-dimensional over F, $T: V \to V$ with $\lambda_1, \ldots, \lambda_r$ distinct roots of $f_T(t)$. Then T has a basis of eigenvectors for T if and only if $V = E_{\lambda_1} + \cdots + E_{\lambda_r}$.

1 Inner Product Spaces

Definition (Inner Product). Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. An *inner product* on V is a function

$$
\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}
$$

(written as $\langle x, y \rangle$ for $x, y \in V$) such that for all $x, y, z \in V$ and all $c \in \mathbb{F}$:

- (a) $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$ (Linearity in the first variable)
- (b) $\langle cx, y \rangle = c \langle x, y \rangle$
- (c) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (Conjugate symmetry)
- (d) If $x \neq \vec{0}$, then $\langle x, x \rangle > 0$ (Positive-definiteness)

Theorem (IP Properties). Let V be an inner product space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Then for all $x, y, z \in V$ and all $c \in \mathbb{F}$:

- (a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- (b) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$
- (c) $\langle x,\vec{0}\rangle = \langle \vec{0},x\rangle = 0$
- (d) $\langle x, x \rangle = 0 \iff x = \vec{0}$
- (e) If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then $y = z$.

Theorem (IP Properties Continued). If V is an inner product space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, then:

- (a) For all $x \in V$ and $c \in \mathbb{F}$: $||cx|| = |c| ||x||$ where $c = a + ib \in \mathbb{C}$ and $|c| = \sqrt{a}$ $a^2 + b^2$.
- (b) $||x|| = 0 \iff x = \vec{0}$.
- (c) If $x \neq \vec{0}$, then $\frac{x}{\|x\|}$ is normal.

Theorem (Orthogonal Projections). Let V be an inner product space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let $\beta =$ $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be an orthogonal basis. Given $x \in V$,

$$
x = \sum_{i=1}^{n} \frac{\langle x, \vec{v_i} \rangle}{\|\vec{v_i}\|^2} \vec{v_i}.
$$

Corollary (Orthonormal Basis). If $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is an orthonormal basis (ONB) for V, then for all $x \in V$,

$$
x = \sum_{i=1}^{n} \langle x, \vec{v_i} \rangle \vec{v_i}.
$$

Definition (Orthogonal Projection). Let V be an inner product space. Let $U \subseteq V$ be a subspace. Given an orthonormal basis (ONB) for U, $\{\vec{u}_1, \ldots, \vec{u}_k\} \subseteq U$, the orthogonal projection onto U is a function

$$
P_U:V\to V
$$

defined by

$$
P_U(v) = \sum_{j=1}^k \frac{\langle v, \vec{u}_j \rangle}{\|\vec{u}_j\|^2} \vec{u}_j.
$$

Proposition (Minimum value for projection). Suppose V is finite-dimensional. Let U be a subspace of V, and let $v \in V$. Then the value $||v - \vec{x}||$ is minimized when $\vec{x} = P_U(v)$, where P_U is the orthogonal projection onto U.

Lemma (Pythagorean Theorem). Let $\vec{x} \in U$ and $v \in V$. Then

$$
||v - \vec{x}||^{2} = ||P_{U}(v) - \vec{x}||^{2} + ||P_{U}(v) - v||^{2}.
$$

This is the Pythagorean theorem.

Theorem (Idea behind Gram Schmidt). Let V be an inner product space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let $S = \{s_1, \ldots, s_n\}$ be a linearly independent set in V. Let $U_i = \text{span}\{s_1, \ldots, s_i\}$. Define:

$$
t_1=s_1,
$$

$$
t_j = s_j - P_{U_{j-1}}(s_j).
$$

Then the set $S' = \{t_1, \ldots, t_n\}$ is orthogonal, and

$$
\mathrm{span}(S) = \mathrm{span}(S').
$$

Furthermore, the set $S'' = \left\{ \frac{t_1}{\|t_1\|}, \ldots, \frac{t_n}{\|t_n\|} \right\}$ is an orthonormal basis (ONB) for span(S).

Theorem (Gram-Schmidt Algorithm). Let $S = \{w_1, \ldots, w_n\}$ be a linearly independent set in V. Define:

$$
v_1 = w_1,
$$

$$
v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j \quad \text{for } 2 \le k \le n.
$$

Let $S' = \{v_1, \ldots, v_n\}$. Then S' is orthogonal. Furthermore, let

$$
S'' = \left\{ \frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|} \right\}.
$$

Then S'' is orthonormal.

Definition (Adjoint Operator). Given $T: V \to V$, let $T^*: V \to V$ be determined by $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$.

Theorem (On Adjoint Operators). Let $T: V \to V$ be a linear operator, and let β be an orthonormal basis (ONB) for V . Then,

 $[T^*]_{\beta} = [T]_{\beta}^*$

where for $A \in M_{n \times n}(F)$, $(A^*)_{ij} = \overline{A_{ji}}$.

Definition (Normal and Self-adjoint). We say that $T: V \to V$ is **normal** if $TT^* = T^*T$. We say that $T: V \to V$ is **self-adjoint** if $T^* = T$. We say that $A \in M_{n \times n}(F)$ is **normal** if $AA^* = A^*A$. We say that $A \in M_{n \times n}(F)$ is **self-adjoint** if $A^* = A$.

Theorem (\star - Stronger diagonalization). Let $T: V \to V$ be linear.

- If $F = \mathbb{C}, T$ is normal \iff there exists an orthonormal basis (ONB) for V of eigenvectors for T.
- If $F = \mathbb{R}, T$ is self-adjoint \iff there exists an ONB for V of eigenvectors for T.

Theorem (Facts about Adjoints). Let $T: V \to V$ be normal. Then:

- 1. $||T(x)|| = ||T^*(x)|| \forall x \in V.$
- 2. $T cI$ is normal $\forall c \in \mathbb{F}$.
- 3. If x is an eigenvector for T with eigenvalue λ , then x is an eigenvector for T^{*} with eigenvalue $\overline{\lambda}$.
- 4. If $\lambda_1 \neq \lambda_2, x, y \in V$, $T(x) = \lambda_1 x, T(y) = \lambda_2 y$, then $\langle x, y \rangle = 0$. i.e. Eigenvectors for distinct eigenvalues are orthogonal.

Theorem (Adjoints and Kernels and Images). Let $T: V \to V$ be a linear operator on a finite-dimensional inner product space V , and let T^* be the adjoint of T . Then the following properties hold:

- 1. $\text{Im}(T^*)^{\perp} = \text{ker}(T)$
- 2. If V is finite-dimensional, $\text{Im}(T^*) = \text{ker}(T)^{\perp}$
- 3. $\text{Im}(T)^{\perp} = \text{ker}(T^*)$
- 4. If V is finite-dimensional, $\text{Im}(T) = \text{ker}(T^*)^{\perp}$

Theorem (Schur's). Suppose that $T: V \to V$ is linear and $f_T(t)$ splits. Then there exists an orthonormal basis (ONB) for V such that $[T]_\beta$ is upper-triangular.

Theorem (Fundamental Theorem of Algebra). Every non-constant polynomial $g(t) \in Poly(\mathbb{C})$ has a root in C.

- **Theorem** (Spectral Theorem). Let V be a finite-dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $T: V \to V$ be linear and normal if $\mathbb{F} = \mathbb{C}$, self-adjoint if $\mathbb{F} = \mathbb{R}$. Let $\lambda_1, \ldots, \lambda_k$ be the eigenvalues of T, and let $W_i = E_{\lambda_i}$. Then:
	- 1. $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$
	- 2. $W_i \perp \sum_{\substack{j=1 \ j \neq i}}^k W_j$
	- Let $T_i = P_{W_i}$ for $1 \leq i \leq k$:
	- 3. $I = T_1 + \cdots + T_k$
	- 4. $T = \lambda_1 T_1 + \cdots + \lambda_k T_k$

What does this mean? (4): Decompose T into scaled projection operators. The spectral decomposition of T.