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Chapter 1: Integer Arithmetic

Definition (Division Algorithm). Let a, b ∈ Z with b > 0. There exist unique integers q and r such that

a = bq + r and 0 ≤ r < b.

Existence Sketch: We can set q =
⌊
a
b

⌋
(the floor of a/b), and then define r = a − bq. One checks that

0 ≤ r < b.
Uniqueness Sketch: If there were two representations

a = bq1 + r1 = bq2 + r2 with 0 ≤ r1, r2 < b,

then subtracting them gives b(q1 − q2) = r2 − r1. Since |r2 − r1| < b, the only way b | (r2 − r1) is if r2 = r1
and hence q1 = q2.

Definition (Well-Ordering Property of N). The Well-Ordering Principle states that every non-empty subset
of N has a least element.

Definition (Greatest Common Divisor (gcd)). Let a and b be integers, not both 0. The greatest common
divisor (gcd) of a and b is the largest integer d that divides both a and b. In other words, d is the gcd of a
and b provided that:

1. d | a and d | b;

2. if c | a and c | b, then c ≤ d.

The greatest common divisor of a and b is usually denoted (a, b).

Theorem (Theorem 1.2). Let a and b be integers, not both 0, and let d be their greatest common divisor.
Then there exist (not necessarily unique) integers u and v such that

d = au+ bv.

Corollary (Corollary 1.3). Let a and b be integers, not both 0, and let d be a positive integer. Then d is
the greatest common divisor of a and b if and only if d satisfies these conditions:

1. d | a and d | b;

2. if c | a and c | b, then c | d.
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Theorem (Theorem 1.4). If a | bc and (a, b) = 1, then a | c.

Proof. Since (a, b) = 1, Theorem 1.2 shows that au + bv = 1 for some integers u and v. Multiplying this
equation by c shows that

acu+ bcv = c.

But a | bc, so that bc = ar for some r. Therefore,

c = acu+ bcv = acu+ (ar)v = a(cu+ rv).

The first and last parts of this equation show that a | c.

Definition (Prime Integer). An integer p is said to be prime if p ̸= 0,±1 and the only divisors of p are ±1
and ±p.

Theorem (Theorem 1.5). Let p be an integer with p ̸= 0,±1. Then p is prime if and only if p has this
property:

whenever p | bc, then p | b or p | c.

Corollary (Corollary 1.6). If p is prime and p | a1a2 · · · an, then p divides at least one of the ai.

Proof. If p | a1(a2a3 · · · an), then p | a1 or p | a2a3 · · · an by Theorem 1.5. If p | a1, we are finished. If
p | a2(a3a4 · · · an), then p | a2 or p | a3a4 · · · an by Theorem 1.5 again. If p | a2, we are finished; if not,
continue this process, using Theorem 1.5 repeatedly. After at most n steps, there must be an ai that is
divisible by p.

Theorem (The Fundamental Theorem of Arithmetic). Every integer n except 0,±1 is a product of primes.
This prime factorization is unique in the following sense:

If
n = p1p2 · · · pr and n = q1q2 · · · qs,

with each pi, qj prime, then r = s (that is, the number of factors is the same) and after reordering and
relabeling the qj ’s,

p1 = ±q1, p2 = ±q2, . . . , pr = ±qr.

Corollary (Corollary 1.9). Every integer n > 1 can be written in one and only one way in the form

n = p1p2p3 · · · pr,

where the pi are positive primes such that

p1 ≤ p2 ≤ p3 ≤ · · · ≤ pr.

Theorem (Theorem 1.10). Let n > 1. If n has no positive prime factor less than or equal to
√
n, then n is

prime.
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Chapter 2: Modular Arithmetic

Definition (Modular Congruence Classes). Let a and n be integers with n > 0. The congruence class of
a modulo n (denoted [a]) is the set of all those integers that are congruent to a modulo n, that is,

[a] = {b ∈ Z | b ≡ a (mod n)}.

Definition (Modular Equivalence). Let a, b, n be integers with n > 0. Then a is congruent to b modulo
n (written a ≡ b (mod n)) provided that n divides a− b.

Theorem (2.1). Let n be a positive integer. For all a, b, c ∈ Z:

1. a ≡ a (mod n);

2. if a ≡ b (mod n), then b ≡ a (mod n);

3. if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Theorem (2.2). If a ≡ b (mod n) and c ≡ d (mod n), then:

1. a+ c ≡ b+ d (mod n);

2. ac ≡ bd (mod n).

Theorem (Theorem 2.3). a ≡ c (mod n) if and only if [a] = [c].

Corollary (Corollary 2.4). Two congruence classes modulo n are either disjoint or identical.

Corollary (Corollary 2.5). Let n > 1 be an integer and consider congruence modulo n.

1. If a is any integer and r is the remainder when a is divided by n, then [a] = [r].

2. There are exactly n distinct congruence classes, namely, [0], [1], [2], . . . , [n− 1].

Theorem (Theorem 2.8). If p > 1 is an integer, then the following conditions are equivalent:

1. p is prime.

2. For any a ̸= 0 in Zp, the equation ax = 1 has a solution in Zp.

3. Whenever bc = 0 in Zp, then b = 0 or c = 0.
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1 Chapter 3: Rings

Definition (Ring). A ring is a nonempty set R equipped with two operations (usually written as addition
and multiplication) that satisfy the following axioms. For all a, b, c ∈ R:

1. a+ b ∈ R [Closure for addition]

2. a+ (b+ c) = (a+ b) + c [Associative addition]

3. a+ b = b+ a [Commutative addition]

4. There exists an element 0R ∈ R such that a+ 0R = a = 0R + a for every a ∈ R. [Additive identity or
zero element]

5. For each a ∈ R, the equation a+ x = 0R has a solution in R. [Additive inverse]

6. a · b ∈ R [Closure for multiplication]

7. a · (b · c) = (a · b) · c [Associative multiplication]

8. a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c. [Distributive laws]

Definition (Commutative Ring). A commutative ring is a ring R that satisfies the additional axiom:

(9) a · b = b · a for all a, b ∈ R. [Commutative multiplication]

Definition (Ring with Identity). A ring with identity is a ring R that contains an element 1R satisfying the
additional axiom:

(10) a · 1R = a = 1R · a for all a ∈ R. [Multiplicative identity]

Definition (Integral Domain). An integral domain is a commutative ring R with identity 1R ̸= 0R that
satisfies the additional axiom:

(11) Whenever a, b ∈ R and a · b = 0R, then a = 0R or b = 0R. [Zero-product property]

Definition (Field). A field is a commutative ring R with identity 1R ̸= 0R that satisfies the additional
axiom:

(12) For each a ̸= 0R in R, the equation a · x = 1R has a solution in R. [Multiplicative inverses]

Theorem (Cartesian Product of Rings). Let R and S be rings. Define addition and multiplication on the
Cartesian product R× S by

(r, s) + (r′, s′) = (r + r′, s+ s′) and (r, s)(r′, s′) = (rr′, ss′).

Then R×S is a ring. If R and S are both commutative, then so is R×S. If both R and S have an identity,
then so does R× S.

Theorem (Subring Criterion). Suppose that R is a ring and that S is a subset of R such that

1. S is closed under addition (if a, b ∈ S, then a+ b ∈ S);
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2. S is closed under multiplication (if a, b ∈ S, then ab ∈ S);

3. 0R ∈ S;

4. If a ∈ S, then the solution of the equation a+ x = 0R is in S.

Then S is a subring of R.

Theorem (Subrings of Z/nZ). The number of subrings of the ring Z/nZ is equal to the number of positive
divisors of n.

Theorem (Properties of Ring Homomorphisms). Let f : R → S be a ring homomorphism. Then:

1. f(0R) = 0,

2. f(−a) = −f(a) for all a ∈ R,

3. f(a− b) = f(a)− f(b) for all a, b ∈ R.

If R has a multiplicative identity 1R and f is surjective, then:

4. S has a multiplicative identity 1S and f(1R) = 1S ,

5. If u is a unit in R, then f(u) is a unit in S and f(u−1) = f(u)−1.

Proof. 1. f(0R) = 0: Since f is a homomorphism, we have:

f(0R) = f(0R + 0R) = f(0R) + f(0R).

Subtract f(0R) from both sides to get f(0R) = 0.

2. f(−a) = −f(a): By definition, −f(a) is the unique element such that:

f(a) + (−f(a)) = 0.

We need to show f(−a) + f(a) = 0:

f(−a+ a) = f(0R) = 0 =⇒ f(−a) + f(a) = 0.

Thus, f(−a) = −f(a).

3. f(a− b) = f(a)− f(b): Using f(a− b) = f(a+ (−b)), we have:

f(a− b) = f(a) + f(−b) = f(a)− f(b).

4. S has a multiplicative identity: Since f is surjective, any a ∈ S can be written as f(b) for some
b ∈ R. We need to show f(1R)a = a for all a ∈ S:

f(1R)a = f(1R)f(b) = f(1Rb) = f(b) = a.

Hence, f(1R) = 1S is the multiplicative identity of S.

5. f(u) is a unit in S: Let u be a unit in R with u−1 ∈ R such that uu−1 = 1R. Then:

f(u)f(u−1) = f(uu−1) = f(1R) = 1S .

Thus, f(u) is a unit in S with f(u−1) = f(u)−1.
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2 Chapter 4: Polynomials

Definition (Extension Ring Construction). Let R be a ring. Then there exists a ring T containing an
element x ̸∈ R such that:

1. R is a subring of T .

2. xa = ax for every a ∈ R.

3. The set R[x] of all elements of T of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n,

where n ≥ 0 and ai ∈ R, is a subring of T that contains R.

4. The representation of elements of R[x] is unique: If

a0 + a1x+ a2x
2 + · · ·+ anx

n = b0 + b1x+ b2x
2 + · · ·+ bmxm,

where n ̸= m, then ai = bi for i = 0, 1, . . . ,min(n,m) and bi = 0 for each i > n.

5. a0 + a1x+ a2x
2 + · · ·+ anx

n = 0 in R[x] if and only if ai = 0 for every i.

Theorem (Degree of a Product of Polynomials). Let R be an integral domain, and let f(x), g(x) be nonzero
polynomials in R[x]. Then:

deg[f(x)g(x)] = deg f(x) + deg g(x).

Proof. Suppose

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n and g(x) = b0 + b1x+ b2x
2 + · · ·+ bmxm,

where an ̸= 0R and bm ̸= 0R, so that deg f(x) = n and deg g(x) = m. Then:

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ (a2b0 + a1b1 + a0b2)x
2 + · · ·+ anbmxn+m.

The largest exponent of x that can possibly have a nonzero coefficient is n+m. Since an ̸= 0R and bm ̸= 0R,
their product anbm ̸= 0R because R is an integral domain. Therefore, f(x)g(x) is nonzero, and:

deg[f(x)g(x)] = n+m = deg f(x) + deg g(x).

Theorem. If R is an integral domain, then so is R[x].

Proof. Since R is a commutative ring with identity, so is R[x] (by Exercises 7 and 8). The proof of Theorem
4.2 shows that the product of nonzero polynomials in R[x] is nonzero. Therefore, R[x] is an integral domain.

Corollary. Let R be a commutative ring (not necessarily an integral domain). If f(x), g(x) ∈ R[x] are
nonzero and f(x)g(x) ̸= 0, then in general we cannot guarantee deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).
Indeed, zero divisors in R can cause the leading term to vanish, so that

deg(f(x)g(x)) < deg(f(x)) + deg(g(x)).
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Corollary. Let R be an integral domain and f(x) ∈ R[x]. Then f(x) is a unit in R[x] if and only if f(x) is
a constant polynomial that is a unit in R.

In particular, if F is a field, the units in F [x] are the nonzero constants in F .

Theorem (Division Algorithm in F [x], 4.6). Let F be a field and let f, g ∈ F [x] with g ̸= 0. Then there
exist unique polynomials q, r such that

f = gq + r,

where either r = 0 or deg(r) < deg(g).

Theorem (4.7). Let F be a field and let a(x), b(x) ∈ F [x] with b(x) ̸= 0.

1. If b(x) divides a(x), then cb(x) divides a(x) for each nonzero c ∈ F .

2. Every divisor of a(x) has degree less than or equal to deg a(x).

Definition (Greatest Common Factor). Let F be a field, and let a(x), b(x) ∈ F [x], not both zero. The
greatest common divisor (gcd) of a(x) and b(x) is the monic polynomial of highest degree that divides
both a(x) and b(x).

In other words, d(x) is the gcd of a(x) and b(x) provided that d(x) is monic and satisfies the following
conditions:

1. d(x) divides both a(x) and b(x), i.e., d(x) | a(x) and d(x) | b(x).

2. If c(x) divides both a(x) and b(x), then deg c(x) ≤ deg d(x).

Theorem (4.8, Bezout’s for Polynomials). Let F be a field, and let a(x), b(x) ∈ F [x], not both zero. Then
there is a unique greatest common divisor d(x) of a(x) and b(x). Furthermore, there exist (not necessarily
unique) polynomials u(x) and v(x) such that

d(x) = a(x)u(x) + b(x)v(x).

Corollary (4.9). Let F be a field, and let a(x), b(x) ∈ F [x], not both zero. A monic polynomial d(x) ∈ F [x]
is the greatest common divisor of a(x) and b(x) if and only if d(x) satisfies the following conditions:

(i) d(x) divides a(x) and b(x).

(ii) If c(x) divides both a(x) and b(x), then c(x) also divides d(x).

Definition (Relatively prime). Polynomials f(x) and g(x) are said to be relatively prime if their greatest
common divisor is 1.

Theorem (4.10). Let F be a field, and let a(x), b(x), c(x) ∈ F [x]. If a(x) divides b(x)c(x) and a(x) and
b(x) are relatively prime, then a(x) divides c(x).
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Definition (Associates). Let F be a field. A polynomial f(x) is an associate of g(x) in F [x] if and only if

f(x) = cg(x)

for some nonzero c ∈ F .

Definition (Associates in a Ring). Let R be a commutative ring with unity. Two elements a and b in R
are said to be associates if there exists a unit u ∈ R such that

a = ub.

We write a ∼ b to denote that a and b are associates.

Definition (Irreducible polynomial). Let F be a field. A nonconstant polynomial p(x) ∈ F [x] is said to be
irreducible if its only divisors are its associates and the nonzero constant polynomials (units).

A nonconstant polynomial that is not irreducible is said to be extbfreducible.

Theorem (Reducibility Criterion 4.11). Let F be a field. A nonzero polynomial f(x) is reducible in F [x] if
and only if f(x) can be written as the product of two polynomials of lower degree.

Theorem (Irreducibility Conditions 4.12). Let F be a field and p(x) a nonconstant polynomial in F [x].
Then the following conditions are equivalent:

1. p(x) is irreducible.

2. If b(x) and c(x) are any polynomials such that p(x) | b(x)c(x), then p(x) | b(x) or p(x) | c(x).

3. If r(x) and s(x) are any polynomials such that p(x) = r(x)s(x), then either r(x) or s(x) is a nonzero
constant polynomial.

Corollary (Divisibility Property of Irreducible Polynomials 4.13). Let F be a field and p(x) an irreducible
polynomial in F [x]. If p(x) divides the product a1(x)a2(x) . . . an(x), then p(x) divides at least one of the
ai(x).

Theorem (Unique Factorization of Polynomials 4.14). Let F be a field. Every nonconstant polynomial f(x)
in F [x] is a product of irreducible polynomials in F [x]. This factorization is unique in the following sense: If

f(x) = p1(x)p2(x) · · · pr(x)

and
f(x) = q1(x)q2(x) · · · qs(x),

where each pi(x) and qj(x) are irreducible in F [x], then r = s and there exists a permutation σ of {1, 2, . . . , r}
such that

pi(x) and qσ(i)(x) are associates for all i.

Definition (Roots of a Polynomial). Let R be a commutative ring and f(x) ∈ R[x]. An element a of R is
said to be a root (or zero) of the polynomial f(x) if f(a) = 0R, that is, if the induced function f : R → R
maps a to 0R.
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Theorem (Remainder Theorem 4.15). Let F be a field, f(x) ∈ F [x], and a ∈ F . The remainder when f(x)
is divided by the polynomial x− a is f(a).

By the Division Algorithm, we can write:

f(x) = (x− a)q(x) + r(x),

where the remainder r(x) either is 0F or has smaller degree than the divisor x − a. Thus, deg r(x) = 0 or
r(x) = 0F . In either case, r(x) = c for some c ∈ F . Hence,

f(x) = (x− a)q(x) + c,

so that evaluating at a gives:
f(a) = (a− a)q(a) + c = 0F + c = c.

Theorem (Factor Theorem 4.16). Let F be a field, f(x) ∈ F [x], and a ∈ F . Then a is a root of the
polynomial f(x) if and only if x− a is a factor of f(x) in F [x].

Proof: First, assume that a is a root of f(x). Then we have:

f(x) = (x− a)q(x) + r(x),

by the Division Algorithm. By the Remainder Theorem, this simplifies to:

f(x) = (x− a)q(x) + f(a).

Since a is a root of f(x), we know f(a) = 0F . Thus,

f(x) = (x− a)q(x),

which shows that x− a is a factor of f(x).
Conversely, assume that x− a is a factor of f(x). That is, suppose:

f(x) = (x− a)g(x).

Evaluating at x = a gives:
f(a) = (a− a)g(a) = 0F g(a) = 0.

Hence, a is a root of f(x).

Corollary (Bound on Roots of a Polynomial 4.17). Let F be a field and let f(x) be a nonzero polynomial
of degree n in F [x]. Then f(x) has at most n roots in F .

Corollary (Irreducible Polynomials Have No Roots 4.18). Let F be a field and let f(x) ∈ F [x] with
deg f(x) ≥ 2. If f(x) is irreducible in F [x], then f(x) has no roots in F .

Corollary (4.19). Let F be a field and let f(x) ∈ F [x] be a polynomial of degree 2 or 3. Then f(x) is
irreducible in F [x] if and only if f(x) has no roots in F .

Corollary (4.20). Let F be an infinite field and let f(x), g(x) ∈ F [x]. Then f(x) and g(x) induce the same
function from F to F if and only if f(x) = g(x) in F [x].
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Theorem (Rational Root Test 4.21). Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

be a polynomial with integer coefficients. If r ̸= 0 and the rational number r/s (in lowest terms) is a root of
f(x), then r | a0 and s | an.

Lemma (4.22). Let f(x), g(x), h(x) ∈ Z[x] with f(x) = g(x)h(x). If p is a prime that divides every coefficient
of f(x), then either p divides every coefficient of g(x) or p divides every coefficient of h(x).

Theorem (Integral Factorization Theorem 4.23). Let f(x) be a polynomial with integer coefficients. Then
f(x) factors as a product of polynomials of degrees m and n in Q[x] if and only if f(x) factors as a product
of polynomials of degrees m and n in Z[x].

Theorem (Eisenstein’s Criterion 4.24). Let

f(x) = anx
n + · · ·+ a1x+ a0

be a nonconstant polynomial with integer coefficients. If there is a prime p such that p divides each of
a0, a1, . . . , an−1 but p does not divide an and p2 does not divide a0, then f(x) is irreducible in Q[x].

Theorem (Irreducibility Modulo p Implies Irreducibility Over Q 4.25). Let

f(x) = akx
k + · · ·+ a1x+ a0

be a polynomial with integer coefficients, and let p be a positive prime that does not divide ak. If f(x) is
irreducible in Zp[x], then f(x) is irreducible in Q[x].

Proof: Suppose, on the contrary, that f(x) is reducible in Q[x]. Then by Theorem 4.23, we can write:

f(x) = g(x)h(x),

where g(x), h(x) are nonconstant polynomials in Z[x]. Since p does not divide ak, the leading coefficient of
f(x), it cannot divide the leading coefficients of g(x) or h(x) (whose product is ak). Consequently,

deg g(x) = deg g(x) and deg h(x) = deg h(x).

In particular, neither g(x) nor h(x) is a constant polynomial in Zp[x].
Verify that f(x) = g(x)h(x) in Z[x] implies that f(x) = g(x)h(x) in Zp[x] (Exercise 20). This contradicts

the irreducibility of f(x) in Zp[x]. Therefore, f(x) must be irreducible in Q[x].

Theorem (Fundamental Theorem of Algebra 4.26). Every nonconstant polynomial in C[x] has a root in C.

Corollary (4.27). A polynomial is irreducible in C[x] if and only if it has degree 1.

Corollary (4.28). Every nonconstant polynomial f(x) of degree n in C[x] can be written in the form

c(x− a1)(x− a2) · · · (x− an)

for some c, a1, a2, . . . , an ∈ C. This factorization is unique except for the order of the factors.
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Lemma (4.29). If f(x) is a polynomial in R[x] and a+ bi is a root of f(x) in C, then a− bi is also a root
of f(x).

Theorem (4.30, Irreducibility in R[x]). A polynomial f(x) is irreducible in R[x] if and only if f(x) is a
first-degree polynomial or

f(x) = ax2 + bx+ c with b2 − 4ac < 0.

Proof: The proof that the polynomials described in the theorem are irreducible is left as Exercise 7.
Conversely, suppose f(x) has degree at least 2 and is irreducible in R[x]. Then by Theorem 4.26, f(x)

has a root ω in C. Since f(x) has real coefficients, its roots must occur in conjugate pairs, meaning ω is
also a root. Moreover, ω cannot be real, as that would imply f(x) has a linear factor in R[x], contradicting
irreducibility. Thus, ω ̸= ω.

By the Factor Theorem, (x− ω) and (x− ω) are factors of f(x) in C[x], so we can write:

f(x) = (x− ω)(x− ω)h(x)

for some h(x) ∈ C[x]. Now define:

g(x) = (x− ω)(x− ω) = (x− (r + si))(x− (r − si)) = x2 − 2rx+ (r2 + s2).

The coefficients of g(x) are real numbers, meaning g(x) ∈ R[x].
By the Division Algorithm in R[x], there exist polynomials q(x), r(x) ∈ R[x] such that:

f(x) = g(x)q(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(g(x)).

However, since we already have f(x) = g(x)h(x) in C[x], the uniqueness of the quotient and remainder in
the Division Algorithm implies that q(x) = h(x) and r(x) = 0. Thus, h(x) ∈ R[x].

Since f(x) = g(x)h(x) and f(x) is irreducible in R[x], it must be that h(x) is a constant d ∈ R. Therefore,

f(x) = dg(x),

meaning f(x) is a quadratic polynomial of the form ax2 + bx+ c for some a, b, c ∈ R. Finally, since f(x) has
no real roots, the quadratic formula implies that its discriminant satisfies b2 − 4ac < 0.

3 Chapter 5: Congruence in F [x] and Congruence Class Arith-
metic

Definition (Polynomial Congruence Modulo p(x)). Let F be a field and let f(x), g(x), p(x) ∈ F [x] with
p(x) nonzero. Then f(x) is congruent to g(x) modulo p(x) (written f(x) ≡ g(x) (mod p(x))) provided
that p(x) divides f(x)− g(x), that is,

p(x) | (f(x)− g(x)).

Theorem (Theorem 5.1). Let F be a field and let p(x) be a nonzero polynomial in F [x]. Then the relation
of congruence modulo p(x) satisfies the following properties:

1. Reflexivity: f(x) ≡ f(x) (mod p(x)) for all f(x) ∈ F [x].

2. Symmetry: If f(x) ≡ g(x) (mod p(x)), then g(x) ≡ f(x) (mod p(x)).
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3. Transitivity: If f(x) ≡ g(x) (mod p(x)) and g(x) ≡ h(x) (mod p(x)), then f(x) ≡ h(x) (mod p(x)).

Theorem (Theorem 5.2). Let F be a field and let p(x) be a nonzero polynomial in F [x]. If f(x) ≡ g(x)
(mod p(x)) and h(x) ≡ k(x) (mod p(x)), then:

1. f(x) + h(x) ≡ g(x) + k(x) (mod p(x)).

2. f(x)h(x) ≡ g(x)k(x) (mod p(x)).

Definition (Congruence Class of a Polynomial). Let F be a field and let f(x), p(x) ∈ F [x] with p(x) nonzero.
The congruence class (or residue class) of f(x) modulo p(x), denoted [f(x)], is the set of all polynomials
in F [x] that are congruent to f(x) modulo p(x), that is,

[f(x)] = {g(x) ∈ F [x] | g(x) ≡ f(x) (mod p(x))}.

Theorem (Theorem 5.3). f(x) ≡ g(x) (mod p(x)) if and only if [f(x)] = [g(x)].

Corollary (Corollary 5.4). Two congruence classes modulo p(x) are either disjoint or identical.

Corollary (Corollary 5.5). Let F be a field and let p(x) be a polynomial of degree n in F [x], and consider
congruence modulo p(x).

1. If f(x) ∈ F [x] and r(x) is the remainder when f(x) is divided by p(x), then [f(x)] = [r(x)].

2. Let S be the set consisting of the zero polynomial and all the polynomials of degree less than n in F [x].
Then every congruence class modulo p(x) is the class of some polynomial in S, and the congruence
classes of different polynomials in S are distinct.

Theorem (Theorem 5.6). Let F be a field and let p(x) be a nonconstant polynomial in F [x]. If [f(x)] = [g(x)]
and [h(x)] = [k(x)] in F [x]/(p(x)), then:

1. [f(x) + h(x)] = [g(x) + k(x)].

2. [f(x)h(x)] = [g(x)k(x)].

Theorem (Theorem 5.7). Let F be a field and let p(x) be a nonconstant polynomial in F [x]. Then the set
F [x]/(p(x)) of congruence classes modulo p(x) is a commutative ring with identity. Furthermore, F [x]/(p(x))
contains a subring F ∗ that is isomorphic to F .

Theorem (Theorem 5.8). Let F be a field and let p(x) be a nonconstant polynomial in F [x]. Then
F [x]/(p(x)) is a commutative ring with identity that contains F .

Theorem (Theorem 5.9). Let F be a field and let p(x) be a nonconstant polynomial in F [x]. If f(x) ∈ F [x]
and f(x) is relatively prime to p(x), then [f(x)] is a unit in F [x]/(p(x)).
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Proof. By Theorem 4.8, there exist polynomials u(x) and v(x) such that

f(x)u(x) + p(x)v(x) = 1.

Rearranging, we get:
f(x)u(x)− 1 = −p(x)v(x) = p(x)(−v(x)),

which implies that
[f(x)u(x)] = [1]

by Theorem 5.3. Therefore,
[f(x)][u(x)] = [f(x)u(x)] = [1],

so that [f(x)] is a unit in F [x]/(p(x)).

Theorem (Theorem 5.10). Let F be a field and let p(x) be a nonconstant polynomial in F [x]. Then the
following statements are equivalent:

1. p(x) is irreducible in F [x].

2. F [x]/(p(x)) is a field.

3. F [x]/(p(x)) is an integral domain.

Theorem (Theorem 5.11). Let F be a field and let p(x) be an irreducible polynomial in F [x]. Then
F [x]/(p(x)) is an extension field of F that contains a root of p(x).

Corollary (Corollary 5.12). Let F be a field and let f(x) be a nonconstant polynomial in F [x]. Then there
exists an extension field K of F that contains a root of f(x).

4 Chapter 6: Ideals and Quotient Rings

Definition (Ideal). A subring I of a ring R is an ideal if, whenever r ∈ R and a ∈ I, then:

ra ∈ I and ar ∈ I.

Theorem (Theorem 6.1). A nonempty subset I of a ring R is an ideal if and only if it satisfies the following
properties:

1. If a, b ∈ I, then a− b ∈ I.

2. If r ∈ R and a ∈ I, then ra ∈ I and ar ∈ I.

Proof. Every ideal certainly satisfies these two properties.
Conversely, suppose I satisfies properties (i) and (ii). Then I absorbs products by (ii), so we need only

verify that I is a subring. Property (i) states that I is closed under subtraction. Since I is a subset of R,
the product of any two elements of I must be in I by (ii). In other words, I is closed under multiplication.
Therefore, I is a subring of R by Theorem 3.6.
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Theorem (Theorem 6.2). Let R be a commutative ring with identity, let c ∈ R, and let I be the set of all
multiples of c in R, that is,

I = {rc | r ∈ R}.

Then I is an ideal of R.

The ideal I in Theorem 6.2 is called the principal ideal generated by c and is denoted by (c). In the ring
Z, for example, (3) indicates the ideal of all multiples of 3.

In any commutative ring R with identity, the principal ideal (1R) is the entire ring R because r = r1R
for every r ∈ R.

It can be shown that every ideal in Z is a principal ideal (Exercise 40). However, there exist ideals in
other rings that are not principal, meaning they do not consist of all the multiples of a particular element of
the ring.

Theorem (Theorem 6.3). Let R be a commutative ring with identity and let c1, c2, . . . , cn ∈ R. Then the
set

I = {r1c1 + r2c2 + · · ·+ rncn | r1, r2, . . . , rn ∈ R}

is an ideal in R.

Definition (Congruence Modulo an Ideal). Let I be an ideal in a ring R and let a, b ∈ R. Then a is
congruent to b modulo I (written a ≡ b (mod I)) provided that a− b ∈ I.

Theorem (Theorem 6.4). Let I be an ideal in a ring R. Then the relation of congruence modulo I satisfies
the following properties:

1. Reflexivity: a ≡ a (mod I) for every a ∈ R.

2. Symmetry: If a ≡ b (mod I), then b ≡ a (mod I).

3. Transitivity: If a ≡ b (mod I) and b ≡ c (mod I), then a ≡ c (mod I).

Theorem (Theorem 6.5). Let I be an ideal in a ring R. If a ≡ b (mod I) and c ≡ d (mod I), then:

1. a+ c ≡ b+ d (mod I).

2. ac ≡ bd (mod I).

Definition (Congruence class of ideal). a+ I := {b ∈ R | a ≡ b mod I}.

Theorem (Theorem 6.6). Let I be an ideal in a ring R and let a, c ∈ R. Then

a ≡ c (mod I) if and only if a+ I = c+ I.

Proof. Recall that by definition, a ≡ c (mod I) if and only if a− c ∈ I.
(⇒) Assume a ≡ c (mod I), i.e., a− c ∈ I. Then

a = c+ (a− c),

which shows that a ∈ c+ I. Thus, every element of a+ I can be written in the form

a+ i = c+ (a− c+ i),
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where a− c+ i ∈ I (since I is an ideal and hence closed under addition). This implies a+ I ⊆ c+ I.
(⇐) Conversely, assume a + I = c + I. Since a ∈ a + I, it follows that a ∈ c + I, so there exists some

i ∈ I such that
a = c+ i.

Thus, a− c = i ∈ I, which means a ≡ c (mod I).
Since both directions have been established, the equivalence is proved.

Corollary (Corollary 6.7). Let I be an ideal in a ring R. Then two cosets of I are either disjoint or identical.

Theorem (Theorem 6.8). Let I be an ideal in a ring R. If a+ I = b+ I and c+ I = d+ I in R/I, then:

1. (a+ c) + I = (b+ d) + I.

2. ac+ I = bd+ I.

Theorem (Theorem 6.9). Let I be an ideal in a ring R. Then:

1. The quotient R/I is a ring, with addition and multiplication of cosets defined as previously.

2. If R is commutative, then R/I is a commutative ring.

3. If R has an identity, then so does the ring R/I.

Theorem (Theorem 6.10). Let f : R → S be a homomorphism of rings. Then the kernel ker f of f is an
ideal in the ring R.

Theorem (Theorem 6.11). Let f : R → S be a homomorphism of rings with kernel K. Then K = {0R} if
and only if f is injective.

Theorem (Theorem 6.12). Let I be an ideal in a ring R. Then the map π : R → R/I given by π(r) = r+ I
is a surjective homomorphism with kernel I. The map π is called the natural homomorphism from R to R/I.

Theorem (Theorem 6.13 (First Isomorphism Theorem)). Let f : R → S be a surjective homomorphism of
rings with kernel K. Then the quotient ring R/K is isomorphic to S, i.e., there exists a ring isomorphism

φ : R/K → S

such that φ(r +K) = f(r) for all r ∈ R.

Definition. An ideal P in a commutative ring R is said to be prime if P ̸= R and whenever bc ∈ P , then
b ∈ P or c ∈ P .

Theorem (Theorem 6.14). Let P be an ideal in a commutative ring R with identity. Then P is a prime
ideal if and only if the quotient ring R/P is an integral domain.
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Definition. An ideal M in a ring R is said to be maximal if M ̸= R and whenever J is an ideal such that
M ⊆ J ⊆ R, then either M = J or J = R.

Equivalently, an ideal M in a ring R is said to be maximal if M ̸= R and whenever M ⊊ J is an ideal,
then J = R.

Theorem (Theorem 6.15). Let M be an ideal in a commutative ring R with identity. Then M is a maximal
ideal if and only if the quotient ring R/M is a field.

Theorem (Additional Theorem). Let n ∈ N be a positive integer with prime factorization

n = pa1
1 pa2

2 · · · pak

k .

Then the ring Zn has exactly k maximal ideals, namely

(p1), (p2), . . . , (pk),

where for each i,
(pi) = {a ∈ Zn : pi divides a}.

Moreover, the quotient ring Zn/(pi) is isomorphic to the finite field Zpi
for each i.

Definition (Hilbert’s Nullstellensatz for Maximal Ideals). Let C denote the field of complex numbers and
consider the polynomial ring C[x1, x2, . . . , xn]. Then every maximal ideal m in C[x1, x2, . . . , xn] is of the
form

m = (x1 − a1, x2 − a2, . . . , xn − an)

for some point a = (a1, a2, . . . , an) ∈ Cn. Conversely, for every point a ∈ Cn, the ideal

(x1 − a1, x2 − a2, . . . , xn − an)

is maximal in C[x1, x2, . . . , xn].
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